Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene...Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene-based SACs depends on an experimental trial-and-error approach.A theoretical guidance principle is highly expected for the efficient evaluation of MXene-based SACs.Herein,highthroughput screening was performed through first-principles calculations and machine learning techniques.Ti_(3)C_(2)(OH)_(x),V_(3)C_(2)(OH)_(x),Zr_(3)C_(2)(OH)_(x),Nb_(3)C_(2)(OH)_(x),Hf_(3)C_(2)(OH)_(x),Ta_(3)C_(2)(OH)_(x),and W_(3)C_(2)(OH)_(x) were screened out based on their excellent stability.Zn,Pd,Ag,Cd,Au,and Hg were proposed to be promising single atoms anchored in MXenes based on cohesive energy analysis.Hf_(3)C_(2)(OH)_(x) with a Pd single atom delivers a theoretical overpotential of 81 mV.Both moderate electron-deficient state and high covalency of metal-carbon bonds were critical features for the high OER reactivity.This principle is expected to be a promising approach to the rational design of OER catalysts for metal-air batteries,fuel cells,and other OER-based energy storage devices.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Interfacial conjugation was employed to engineering preparation of TiO2@NH2-MIL-101(Fe)heterojunction photocataysts through carboxylate bidentate linkage with TiO2 and NH2-MIL-101(Fe),which can enhance the electron tr...Interfacial conjugation was employed to engineering preparation of TiO2@NH2-MIL-101(Fe)heterojunction photocataysts through carboxylate bidentate linkage with TiO2 and NH2-MIL-101(Fe),which can enhance the electron transfer capability from metal-organic frameworks(MOFs)to TiO2 and photocatalytic activity.The carbon nanospheres derived from glucose act as reducing agent and template to synthesize oxygen vacancies TiO2 hollow nanospheres.Then,the oxygen vacancies were employed as antennas to connect 2-aminoterephtalic acid as bidentate carboxylate chelating linkage on TiO2,which have been proved by the density functional theory(DFT)calculations.Subsequently,NH2-MIL-101(Fe)was coordinatingly formed on the surface of TiO2.The conjugation effects between TiO2 and NH2-MIL-101(Fe)enhanced the electron transfer capability and could also induce the band tail states to narrow bandgap of the composites.Thus,the photodegradability of methylene blue was remarkably enhanced under visible light irradiation.The degradation rate of TiO2@17%NH2-MIL-101(Fe)was 0.131 min-1,which was about 3.5 and 65 times higher than that of NH2-MIL-101(Fe)and TiO2,respectively.展开更多
Photocatalytic oxidation of organic molecules into highly value-added products is an innovative and challenging research which has gradually attracted remarkable attention of scientists.In this work,it is demonstrated...Photocatalytic oxidation of organic molecules into highly value-added products is an innovative and challenging research which has gradually attracted remarkable attention of scientists.In this work,it is demonstrated that the COF-TpPa with keto-enol tautomerism equilibrium structure shows excellent performance(yield>99%after 8 h)in the selective photocatalytic oxidative coupling of amines to imines under visible light irradiation.It is revealed that three kinds of reactive oxygen species(superoxide radical,hydroxyl radical and singlet oxygen)participate in this photocatalytic oxidation reaction.In addition,hydrogen protons cleaved from the benzyl are proven to be reduced to hydrogen in the conduction band of COF-TpPa in anaerobic atmosphere,accompanied with the formation of imines.The direct hydrogen evolution from amine provides an effective way to extract clean energy from organic molecule as well as the production of value-added chemicals.As a contrast,COF-LZU1 with similar structure and chemical composition to COF-TpPa but without keto-enol tautomerism exhibits worse optical properties and photocatalytic performance.It is also demonstrated that keto-enol tautomerism favors the adsorption of benzylamine based on the characterization results and theoretical calculations.展开更多
基金National Natural Science Foundation of China (22209094, 22209093)Research Funds of Institute of Zhejiang University-Quzhou (No. IZQ2023RCZX032)+2 种基金USTB Mat Com of Beijing Advanced Innovation Center for Materials Genome EngineeringMinistry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90254)project Quantum materials for applications in sustainable technologies (QM4ST), funded as project No. CZ.02.01.01 /00/22_008/0004572。
文摘Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene-based SACs depends on an experimental trial-and-error approach.A theoretical guidance principle is highly expected for the efficient evaluation of MXene-based SACs.Herein,highthroughput screening was performed through first-principles calculations and machine learning techniques.Ti_(3)C_(2)(OH)_(x),V_(3)C_(2)(OH)_(x),Zr_(3)C_(2)(OH)_(x),Nb_(3)C_(2)(OH)_(x),Hf_(3)C_(2)(OH)_(x),Ta_(3)C_(2)(OH)_(x),and W_(3)C_(2)(OH)_(x) were screened out based on their excellent stability.Zn,Pd,Ag,Cd,Au,and Hg were proposed to be promising single atoms anchored in MXenes based on cohesive energy analysis.Hf_(3)C_(2)(OH)_(x) with a Pd single atom delivers a theoretical overpotential of 81 mV.Both moderate electron-deficient state and high covalency of metal-carbon bonds were critical features for the high OER reactivity.This principle is expected to be a promising approach to the rational design of OER catalysts for metal-air batteries,fuel cells,and other OER-based energy storage devices.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
基金supported by the National Natural Science Foundation of China(51572022 and 51872025)the National Key Research and Development Program of China(2016 YFB0701100)the National Key Research and Development H863 Program of China(18H86303ZT0032702)。
文摘Interfacial conjugation was employed to engineering preparation of TiO2@NH2-MIL-101(Fe)heterojunction photocataysts through carboxylate bidentate linkage with TiO2 and NH2-MIL-101(Fe),which can enhance the electron transfer capability from metal-organic frameworks(MOFs)to TiO2 and photocatalytic activity.The carbon nanospheres derived from glucose act as reducing agent and template to synthesize oxygen vacancies TiO2 hollow nanospheres.Then,the oxygen vacancies were employed as antennas to connect 2-aminoterephtalic acid as bidentate carboxylate chelating linkage on TiO2,which have been proved by the density functional theory(DFT)calculations.Subsequently,NH2-MIL-101(Fe)was coordinatingly formed on the surface of TiO2.The conjugation effects between TiO2 and NH2-MIL-101(Fe)enhanced the electron transfer capability and could also induce the band tail states to narrow bandgap of the composites.Thus,the photodegradability of methylene blue was remarkably enhanced under visible light irradiation.The degradation rate of TiO2@17%NH2-MIL-101(Fe)was 0.131 min-1,which was about 3.5 and 65 times higher than that of NH2-MIL-101(Fe)and TiO2,respectively.
基金supported by the National Natural Science Foundation of China (51802015, 51972024)the Fundamental Research Funds for the Central Universities (FRF-TP-20-005A3)the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities) (FRF-IDRY-19-020)。
文摘Photocatalytic oxidation of organic molecules into highly value-added products is an innovative and challenging research which has gradually attracted remarkable attention of scientists.In this work,it is demonstrated that the COF-TpPa with keto-enol tautomerism equilibrium structure shows excellent performance(yield>99%after 8 h)in the selective photocatalytic oxidative coupling of amines to imines under visible light irradiation.It is revealed that three kinds of reactive oxygen species(superoxide radical,hydroxyl radical and singlet oxygen)participate in this photocatalytic oxidation reaction.In addition,hydrogen protons cleaved from the benzyl are proven to be reduced to hydrogen in the conduction band of COF-TpPa in anaerobic atmosphere,accompanied with the formation of imines.The direct hydrogen evolution from amine provides an effective way to extract clean energy from organic molecule as well as the production of value-added chemicals.As a contrast,COF-LZU1 with similar structure and chemical composition to COF-TpPa but without keto-enol tautomerism exhibits worse optical properties and photocatalytic performance.It is also demonstrated that keto-enol tautomerism favors the adsorption of benzylamine based on the characterization results and theoretical calculations.