Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abil...Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abilities.Furthermore,the factors by which aging relates to hearing loss via changes in audito ry processing ability are still unclear.In this cross-sectional study,we evaluated 27 older adults(over 60 years old) with age-related hearing loss,21 older adults(over 60years old) with normal hearing,and 30 younger subjects(18-30 years old) with normal hearing.We used the outcome of the uppe r-threshold test,including the time-compressed thres h old and the speech recognition threshold in noisy conditions,as a behavioral indicator of auditory processing ability.We also used electroencephalogra p hy to identify presbycusis-related abnormalities in the brain while the participants were in a spontaneous resting state.The timecompressed threshold and speech recognition threshold data indicated significant diffe rences among the groups.In patients with age-related hearing loss,information masking(babble noise) had a greater effect than energy masking(speech-shaped noise) on processing difficulties.In terms of resting-state electroencephalography signals,we observed enhanced fro ntal lobe(Brodmann’s area,BA11) activation in the older adults with normal hearing compared with the younger participants with normal hearing,and greater activation in the parietal(BA7) and occipital(BA19) lobes in the individuals with age-related hearing loss compared with the younger adults.Our functional connection analysis suggested that compared with younger people,the older adults with normal hearing exhibited enhanced connections among networks,including the default mode network,sensorimotor network,cingulo-opercular network,occipital network,and frontoparietal network.These results suggest that both normal aging and the development of age-related hearing loss have a negative effect on advanced audito ry processing capabilities and that hearing loss accele rates the decline in speech comprehension,especially in speech competition situations.Older adults with normal hearing may have increased compensatory attentional resource recruitment represented by the to p-down active listening mechanism,while those with age-related hearing loss exhibit decompensation of network connections involving multisensory integration.展开更多
With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dyn...With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtuMized resources are provided as services. With virtualization technology, cloud computing offers diverse services (such as virtual computing, virtual storage, virtual bandwidth, etc.) for the public by means of multi-tenancy mode. Although users are enjoying the capabilities of super-computing and mass storage supplied by cloud computing, cloud security still remains as a hot spot problem, which is in essence the trust management between data owners and storage service providers. In this paper, we propose a data coloring method based on cloud watermarking to recognize and ensure mutual reputations. The experimental results show that the robustness of reverse cloud generator can guarantee users' embedded social reputation identifications. Hence, our work provides a reference solution to the critical problem of cloud security.展开更多
Although recommendation techniques have achieved distinct developments over the decades,the data sparseness problem of the involved user-item matrix still seriously influences the recommendation quality.Most of the ex...Although recommendation techniques have achieved distinct developments over the decades,the data sparseness problem of the involved user-item matrix still seriously influences the recommendation quality.Most of the existing techniques for recommender systems cannot easily deal with users who have very few ratings.How to combine the increasing amount of different types of social information such as user generated content and social relationships to enhance the prediction precision of the recommender systems remains a huge challenge.In this paper,based on a factor graph model,we formalize the problem in a semi-supervised probabilistic model,which can incorporate different user information,user relationships,and user-item ratings for learning to predict the unknown ratings.We evaluate the method in two different genres of datasets,Douban and Last.fm.Experiments indicate that our method outperforms several state-of-the-art recommendation algorithms.Furthermore,a distributed learning algorithm is developed to scale up the approach to real large datasets.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82171138 (to YQZ),82071 062 (to YXC)the Natural Science Foundation of Guangdong Province,No.2021A1515012038 (to YXC)+1 种基金the Fundamental Research Funds for the Central Universities,No.20ykpy91 (to YXC)the Sun Yat-Sen Clinical Research Cultivating Program,No.SYS-Q-201903 (to YXC)。
文摘Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abilities.Furthermore,the factors by which aging relates to hearing loss via changes in audito ry processing ability are still unclear.In this cross-sectional study,we evaluated 27 older adults(over 60 years old) with age-related hearing loss,21 older adults(over 60years old) with normal hearing,and 30 younger subjects(18-30 years old) with normal hearing.We used the outcome of the uppe r-threshold test,including the time-compressed thres h old and the speech recognition threshold in noisy conditions,as a behavioral indicator of auditory processing ability.We also used electroencephalogra p hy to identify presbycusis-related abnormalities in the brain while the participants were in a spontaneous resting state.The timecompressed threshold and speech recognition threshold data indicated significant diffe rences among the groups.In patients with age-related hearing loss,information masking(babble noise) had a greater effect than energy masking(speech-shaped noise) on processing difficulties.In terms of resting-state electroencephalography signals,we observed enhanced fro ntal lobe(Brodmann’s area,BA11) activation in the older adults with normal hearing compared with the younger participants with normal hearing,and greater activation in the parietal(BA7) and occipital(BA19) lobes in the individuals with age-related hearing loss compared with the younger adults.Our functional connection analysis suggested that compared with younger people,the older adults with normal hearing exhibited enhanced connections among networks,including the default mode network,sensorimotor network,cingulo-opercular network,occipital network,and frontoparietal network.These results suggest that both normal aging and the development of age-related hearing loss have a negative effect on advanced audito ry processing capabilities and that hearing loss accele rates the decline in speech comprehension,especially in speech competition situations.Older adults with normal hearing may have increased compensatory attentional resource recruitment represented by the to p-down active listening mechanism,while those with age-related hearing loss exhibit decompensation of network connections involving multisensory integration.
基金supported by National Basic Research Program of China (973 Program) (No. 2007CB310800)China Postdoctoral Science Foundation (No. 20090460107 and No. 201003794)
文摘With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtuMized resources are provided as services. With virtualization technology, cloud computing offers diverse services (such as virtual computing, virtual storage, virtual bandwidth, etc.) for the public by means of multi-tenancy mode. Although users are enjoying the capabilities of super-computing and mass storage supplied by cloud computing, cloud security still remains as a hot spot problem, which is in essence the trust management between data owners and storage service providers. In this paper, we propose a data coloring method based on cloud watermarking to recognize and ensure mutual reputations. The experimental results show that the robustness of reverse cloud generator can guarantee users' embedded social reputation identifications. Hence, our work provides a reference solution to the critical problem of cloud security.
基金supported by the National Natural Science Foundation of China(Nos.61035004,61273213,61072043,and 61305055)the National Defense Science Foundation of China(No.9140A15090112JB93180)
文摘Although recommendation techniques have achieved distinct developments over the decades,the data sparseness problem of the involved user-item matrix still seriously influences the recommendation quality.Most of the existing techniques for recommender systems cannot easily deal with users who have very few ratings.How to combine the increasing amount of different types of social information such as user generated content and social relationships to enhance the prediction precision of the recommender systems remains a huge challenge.In this paper,based on a factor graph model,we formalize the problem in a semi-supervised probabilistic model,which can incorporate different user information,user relationships,and user-item ratings for learning to predict the unknown ratings.We evaluate the method in two different genres of datasets,Douban and Last.fm.Experiments indicate that our method outperforms several state-of-the-art recommendation algorithms.Furthermore,a distributed learning algorithm is developed to scale up the approach to real large datasets.