期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions 被引量:1
1
作者 Yan-Qi Li Hong-Jun Kan +6 位作者 Yuan-Yuan Miao Lei Yang Shuai Qiu Guang-Ping Zhang Jun-Feng Ren Chuan-Kui Wang gui-chao hu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期424-429,共6页
Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically.The results reveal a large tunneling magnetoresistance up to 3230%by controlling the relative magnetization ori... Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically.The results reveal a large tunneling magnetoresistance up to 3230%by controlling the relative magnetization orientation between the ferromagnet and the central organic ferromagnet.The mechanism is explained by distinct efficient spin-resolved tunneling states in the ferromagnet between the parallel and antiparallel spin configurations.The key role of the organic ferromagnet in generating the large magnetoresistance is explored,where the spin selection effect is found to enlarge the difference of the tunneling states between the parallel and antiparallel configurations by comparing with the conventional organic spin valves.The effects of intrinsic interactions in the organic ferromagnet including electron–lattice interaction and spin coupling with radicals on the magnetoresistance are discussed.This work demonstrates a promising potential of organic ferromagnets in the design of high-performance organic spin valves. 展开更多
关键词 organic ferromagnet organic spintronics tunneling magnetoresistance
下载PDF
Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
2
作者 Zi-Qun Wang Fei Tang +5 位作者 Mi-Mi Dong Ming-Lang Wang gui-chao hu Jian-Cai Leng Chuan-Kui Wang Guang-Ping Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期411-418,共8页
The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the m... The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses.Among the molecularly assembled components,the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge.Here,by using the state-of-the-art nonequilibrium Green’s function theory in conjugation with first-principles method,the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA),TM=Fe,Co)sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated.The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule.By taking advantage of spin degree of freedom of electrons,NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA)and Co(DBTAA)junctions depending on the definitions of input and output signals.This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits. 展开更多
关键词 single-molecule junction molecular logic gate spin transport nonequilibrium Green’s function method
下载PDF
Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
3
作者 Ling-Mei Zhang Yuan-Yuan Miao +5 位作者 Zhi-Peng Cao Shuai Qiu Guang-Ping Zhang Jun-Feng Ren Chuan-Kui Wang gui-chao hu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期623-628,共6页
Based on first-principles calculations,the bias-induced evolutions of hybrid interface states inπ-conjugated tricene and in insulating octane magnetic molecular junctions are investigated.Obvious bias-induced splitti... Based on first-principles calculations,the bias-induced evolutions of hybrid interface states inπ-conjugated tricene and in insulating octane magnetic molecular junctions are investigated.Obvious bias-induced splitting and energy shift of the spin-resolved hybrid interface states are observed in the two junctions.The recombination of the shifted hybrid interface states from different interfaces makes the spin polarization around the Fermi energy strongly bias-dependent.The transport calculations demonstrate that in theπ-conjugated tricene junction,the bias-dependent hybrid interface states work efficiently for large current,current spin polarization,and distinct tunneling magnetoresistance.But in the insulating octane junction,the spin-dependent transport via the hybrid interface states is inhibited,which is only slightly disturbed by the bias.This work reveals the phenomenon of bias-induced reconstruction of hybrid interface states in molecular spinterface devices,and the underlying role of conjugated molecular orbitals in the transport ability of hybrid interface states. 展开更多
关键词 molecular spinterface hybrid interface states bias effect
下载PDF
Three dimensional phase-field simulation for non-isothermal binary alloy solidification: Comparison with LKT theory
4
作者 Jun Wu Ting-yi Liu +4 位作者 gui-chao hu Rong Ma Xiao-peng Zhang Yu-fei Li Chao Luo 《China Foundry》 SCIE EI CAS CSCD 2023年第6期545-552,共8页
Using the advanced algorithm combining parallel computing,adaptive mesh re-griding and multigrid methods,quantitative 3D phase-field simulations of non-isothermal solidification of binary alloy were carried out.The 3D... Using the advanced algorithm combining parallel computing,adaptive mesh re-griding and multigrid methods,quantitative 3D phase-field simulations of non-isothermal solidification of binary alloy were carried out.The 3D phase-field simulation results were compared with the analytical LKT(Lipton,Kurz and Trivedi)theory.For comparison,the simulation and analytical results for 2D cases were also given.The 3D phase-field simulation results support the transport portion of the LKT theory.However,the tip radius and tip velocity predicted by the simulations are not in good agreement with the LKT theory over the whole range of undercooling.The stability parameter calculated from phase-field simulations varies significantly with the Peclet number,indicating that the stability criterion,which assumes that the stability parameter is constant,is invalid. 展开更多
关键词 3D phase-field non-isothermal solidification free dendritic growth
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部