The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ...The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.展开更多
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l...Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.展开更多
The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphi...The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphipathic molecule Triton X100(Triton) is modified on the NiO_(x)surface.The hydrophilic chain of Triton as a Lewis base additive can coordinate with the Ni3+on the NiO_(x)surface which can passivate the interfacial defects and hinder the detrimental reactions at the NiO_(x)/perovskite interface.Additionally,the hydrophobic chain of Triton protrudes from the NiO_(x)surface to prevent moisture from penetrating into the NiO_(x)/perovskite interface.Consequently,the NiO_(x)/Triton-based devices(MAPbI3as absorbing layer) show superior moisture and thermal stability,retaining 88.4% and 64.3% of the initial power conversion efficiency after storage in air(40%-50% relative humidity(RH)) at 25 ℃ for 1070 h and in N2at 85℃ for 800 h,respectively.Moreover,the efficiency increases from 17.59% to 19.89% because of the passivation defect and enhanced hole-extraction capability.Besides,the NiO_(x)/Triton-based PSCs with Cs_(0.05)(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))3perovskite as the light-absorbing layer also exhibits better moisture and thermal stability compared to the control devices,indicating the viability of our strategies.Of particular note,a champion PCE of 22.35% and 20.46% was achieved for small-area(0.1 cm^(2)) and large-area(1.2 cm^(2)) NiO_(x)/Triton-based devices,respectively.展开更多
Self-assembled monolayers(SAMs)employed in inverted perovskite solar cells(PSCs)have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations,owing to thei...Self-assembled monolayers(SAMs)employed in inverted perovskite solar cells(PSCs)have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations,owing to their distinctive and versatile ability to manipulate chemical and physical interface properties.In this regard,we present a comprehensive review of recent research advancements concerning SAMs in inverted perovskite singlejunction and tandem solar cells,where the prevailing challenges and future development prospects in the applications of SAMs are emphasized.We thoroughly examine the mechanistic roles of diverse SAMs in energy-level regulation,interface modification,defect passivation,and charge transportation.This is achieved by understanding how interfacial molecular interactions can be finely tuned to mitigate charge recombination losses in inverted PSCs.Through this comprehensive review,we aim to provide valuable insights and references for further investigation and utilization of SAMs in inverted perovskite single‐junction and tandem solar cells.展开更多
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0208701)National Natural Science Foundation of China(grant no.21773308)+6 种基金Research Funds of Renmin University of China(grant nos.2017030013,201903020,and 20XNH059)Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS)supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)the experimental support from Suzhou Fangsheng FS-300funding from Deutsche Forschungsge-meinschaft(DFG)via Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)as well as from TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid(SoITech)the China Scholarship Council(CSC)funding
文摘The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.
基金supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS).SERIS is supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)support from the Science and Engineering Research Council of Singapore with Grant No.A1898b0043Singapore NRF CRP Grant No.NRF-CRP24-2020-0002.
文摘Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.
基金supported by the National Key Research and Development Program of China(2018YFA0208701)the National Natural Science Foundation of China(21773308)+7 种基金the Research Funds of Renmin University of China(2017030013,201903020 and 20XNH059)the Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS) at the National University of Singapore(NUS)supported by NUSthe National Research Foundation Singapore(NRF)the Energy Market Authority of Singapore(EMA)the Singapore Economic Development Board(EDB)the financial support from the China Scholarship Council(CSC) funding。
文摘The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphipathic molecule Triton X100(Triton) is modified on the NiO_(x)surface.The hydrophilic chain of Triton as a Lewis base additive can coordinate with the Ni3+on the NiO_(x)surface which can passivate the interfacial defects and hinder the detrimental reactions at the NiO_(x)/perovskite interface.Additionally,the hydrophobic chain of Triton protrudes from the NiO_(x)surface to prevent moisture from penetrating into the NiO_(x)/perovskite interface.Consequently,the NiO_(x)/Triton-based devices(MAPbI3as absorbing layer) show superior moisture and thermal stability,retaining 88.4% and 64.3% of the initial power conversion efficiency after storage in air(40%-50% relative humidity(RH)) at 25 ℃ for 1070 h and in N2at 85℃ for 800 h,respectively.Moreover,the efficiency increases from 17.59% to 19.89% because of the passivation defect and enhanced hole-extraction capability.Besides,the NiO_(x)/Triton-based PSCs with Cs_(0.05)(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))3perovskite as the light-absorbing layer also exhibits better moisture and thermal stability compared to the control devices,indicating the viability of our strategies.Of particular note,a champion PCE of 22.35% and 20.46% was achieved for small-area(0.1 cm^(2)) and large-area(1.2 cm^(2)) NiO_(x)/Triton-based devices,respectively.
基金National Key Research and Development Program of China,Grant/Award Number:2020YFA0715000National Natural Science Foundation of China,Grant/Award Numbers:22279099,62304082,52322315Natural Science Foundation of Hubei Province,Grant/Award Number:2023AFB087。
文摘Self-assembled monolayers(SAMs)employed in inverted perovskite solar cells(PSCs)have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations,owing to their distinctive and versatile ability to manipulate chemical and physical interface properties.In this regard,we present a comprehensive review of recent research advancements concerning SAMs in inverted perovskite singlejunction and tandem solar cells,where the prevailing challenges and future development prospects in the applications of SAMs are emphasized.We thoroughly examine the mechanistic roles of diverse SAMs in energy-level regulation,interface modification,defect passivation,and charge transportation.This is achieved by understanding how interfacial molecular interactions can be finely tuned to mitigate charge recombination losses in inverted PSCs.Through this comprehensive review,we aim to provide valuable insights and references for further investigation and utilization of SAMs in inverted perovskite single‐junction and tandem solar cells.