An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The frac...This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.展开更多
As a typical non-smooth bifurcation, grazing bifurcation can induce instability of elementary near-grazing impact periodic motion in impact oscillators. In this paper,the stability for near-grazing period-one impact m...As a typical non-smooth bifurcation, grazing bifurcation can induce instability of elementary near-grazing impact periodic motion in impact oscillators. In this paper,the stability for near-grazing period-one impact motion to suppress grazing-induced instabilities is analyzed, based on which, a control strategy is proposed. The commonly-used leading order zero time discontinuity mapping is extended to a higher order one to aid the perturbation analysis of the characteristic equation. It is shown that the degenerate grazing bifurcation can eliminate the singular term in the characteristic equation, leading to bounded eigenvalues. Based on such a precondition, the bounded eigenvalues are further restricted inside the unit circle, and a continuous transition between non-impact and controlled impact motion is observed. One discrete feedback controller that changes the velocity of the oscillator based on the selected Poincar′e sections is adopted to demonstrate the control procedure.展开更多
Quasi-zero-stiffness(QZS)vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration.Howeve...Quasi-zero-stiffness(QZS)vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration.However,traditional QZS(T-QZS)vibration isolators usually adopt linear damping,owing to which achieving good isolation performance at both low and high frequencies is difficult.T-QZS isolators exhibit hardening stiffness characteristics,and their vibration isolation performance is even worse than that of linear vibration isolators under a large excitation amplitude.Therefore,this study proposes a QZS isolator with a shear-thinning viscous damper(SVD)to improve the vibration isolation performance of the T-QZS isolators.The force-velocity relation of the SVD is obtained,and a dynamic model is established for the isolator.The dynamic responses of the system are solved using the harmonic balance method(HBM)and the Runge-Kutta method.The vibration isolation performance of the system is evaluated using force transmissibility,and the isolator parameters are analyzed.The results show that compared with the T-QZS isolators,the proposed QZS-SVD isolator achieves the lower initial vibration isolation frequency and peak value,and exhibits better vibration isolation performance at medium and high frequencies.Moreover,the proposed isolator can withstand a large excitation amplitude in the effective vibration isolation range.展开更多
Fail-safe topology optimization is valuable for ensuring that optimized structures remain operable even under damaged conditions.By selectively removing material stiffness in patches with a fixed shape,the complex phe...Fail-safe topology optimization is valuable for ensuring that optimized structures remain operable even under damaged conditions.By selectively removing material stiffness in patches with a fixed shape,the complex phenomenon of local failure is modeled in fail-safe topology optimization.In this work,we first conduct a comprehensive study to explore the impact of patch size,shape,and distribution on the robustness of fail-safe designs.The findings suggest that larger sizes and finer distribution of material patches can yield more robust fail-safe structures.However,a finer patch distribution can significantly increase computational costs,particularly for 3D structures.To keep computational efforts tractable,an efficient fail-safe topology optimization approach is established based on the framework of multi-resolution topology optimization(MTOP).Within the MTOP framework,the extended finite element method is introduced to establish a decoupling connection between the analysis mesh and the topology description model.Numerical examples demonstrate that the developed methodology is 2 times faster for 2D problems and over 25 times faster for 3D problems than traditional fail-safe topology optimization while maintaining similar levels of robustness.展开更多
Under the framework of the small deformation crystal plasticity theory,a crystal plastic cyclic constitutive model for body-centered cubic(BCC)cyclic softening polycrystalline metals is established.The constitutive mo...Under the framework of the small deformation crystal plasticity theory,a crystal plastic cyclic constitutive model for body-centered cubic(BCC)cyclic softening polycrystalline metals is established.The constitutive model introduces the isotropic softening rule that includes two different mechanisms:namely softening under monotonic deformation and softening under cyclic deformation on each slip system.Meanwhile,a modified Armstrong-Frederick nonlinear kinematic hardening rule is adopted.The appropriate explicit scale transition rule is selected to extend the single crystal constitutive model to the polycrystalline constitutive model.Then the model is used to predict the uniaxial and multiaxial ratcheting deformation of BCC axle steel EA4T to verify the rationality of the proposed model.The simulation results indicate that the newly established crystal plasticity model can not only describe the cyclic softening characteristics of BCC axle steel EA4T well,but also reasonably describe the evolution laws of uniaxial ratcheting and nonproportional multiaxial ratcheting deformation.Moreover,the established crystal plastic cyclic constitutive model can reasonably predict the ratcheting behavior of BCC single crystal as well.展开更多
Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to gener...Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.展开更多
In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compl...In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compliant mechanism.The design optimization on geometric parameters is carried out to fulfil the quasi-zero-stiffness property.The locally resonant metamaterial is formed by periodically arranged unit cells,and the transmittance of longitudinal wave is studied through three aspects:numerical predictions,finite element simulations and experimental tests.The variation trends revealed by these three methods match well with one another:the band gap moves to lower frequency and both its depth and width get smaller and smaller with the increase of pre-compression(Δ).The band gap overlays the frequency range of 73.10–92.38 Hz and 16.78–19.49 Hz atΔ=0mm andΔ=10mm,respectively,providing a wide range of tunability.Besides,the ultralow-frequency band gap can be achieved asΔapproaches 10 mm.This study may provide an avenue for achieving the tunable ultralow-frequency locally resonant band gap.展开更多
Topology optimization is a pioneer design method that can provide various candidates with high mechanical properties.However,high resolution is desired for optimum structures,but it normally leads to a computationally...Topology optimization is a pioneer design method that can provide various candidates with high mechanical properties.However,high resolution is desired for optimum structures,but it normally leads to a computationally intractable puzzle,especially for the solid isotropic material with penalization(SIMP)method.In this study,an efficient,high-resolution topology optimization method is developed based on the super-resolution convolutional neural network(SRCNN)technique in the framework of SIMP.SRCNN involves four processes,namely,refinement,path extraction and representation,nonlinear mapping,and image reconstruction.High computational efficiency is achieved with a pooling strategy that can balance the number of finite element analyses and the output mesh in the optimization process.A combined treatment method that uses 2D SRCNN is built as another speed-up strategy to reduce the high computational cost and memory requirements for 3D topology optimization problems.Typical examples show that the high-resolution topology optimization method using SRCNN demonstrates excellent applicability and high efficiency when used for 2D and 3D problems with arbitrary boundary conditions,any design domain shape,and varied load.展开更多
Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed bas...Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.展开更多
In order to improve sprinkler irrigation quality and promote actual irrigation efficiency,the influence analysis of sprinkler irrigation effectiveness(SIE)using ANFIS(Adaptive Neural Fuzzy Inference System)was impleme...In order to improve sprinkler irrigation quality and promote actual irrigation efficiency,the influence analysis of sprinkler irrigation effectiveness(SIE)using ANFIS(Adaptive Neural Fuzzy Inference System)was implemented to balance moisture infiltration and water redistribution in soil field.Firstly,using a detailed description of governing equations proposed for sprinkler irrigation flow,the theoretical foundation and mathematical model of irrigation effectiveness can be established;Secondly,based on a complete preparation of experimental irrigation conditions,a series of calibration indexes quantifying SIE for sprinkler irrigation quality and infiltration efficiency were proposed;Then thirdly,a novel ANFIS system was designed and introduced to evaluate these key effectiveness indexes in actual working operations,so that a series of detailed influence analysis and comprehensive infiltration assessment focusing on sprinkler irrigation effectiveness could be achieved afterwards,which result to the realization of better infiltration equilibrium and higher water redistribution efficiency in actual irrigation test.Therefore,the qualification of sprinkler irrigation effectiveness was achieved,and in addition,the moisture infiltration improvement and soil moisture uniformity were facilitated also in return.展开更多
A crystal-plasticity cyclic constitutive model of polycrystalline material considering intra-granular heterogeneous dislocation substructures,in terms of three dislocation categories:mobile dislocations,immobile dislo...A crystal-plasticity cyclic constitutive model of polycrystalline material considering intra-granular heterogeneous dislocation substructures,in terms of three dislocation categories:mobile dislocations,immobile dislocations in the cell interiors and in the cell walls,is proposed based on the existing microscopic and macroscopic experimental results.The multiplication,annihilation,rearrangement and immobilization of dislocations on each slip system are taken as the basic evolutionary mechanism of the three dislocation categories,and the cross-slip of screw dislocations is viewed as the dynamic recovery mechanism at room temperature.The slip resistance associated with the isotropic hardening rule results from the interactions of dislocations on the slip systems.Meanwhile,a modified nonlinear kinematic hardening rule and a rate-dependent flow rule at the slip system level are employed to improve the predictive capability of the model for ratchetting deformation.The predictive ability of the developed model to uniaxial and mul-tiaxial ratchetting in macroscopic scale is verified by comparing with the experimental results of polycrystalline 316L stainless steel.The ratchetting in intra-granular scale which is obviously dependent on the crystallographic orientation and stress levels can be reasonably predicted by the proposed model.展开更多
The sound absorption and sound transmission loss performances of the natural woods,hard and soft processed woods with attachment of the various natural orwastematerials were investigated in the present study using imp...The sound absorption and sound transmission loss performances of the natural woods,hard and soft processed woods with attachment of the various natural orwastematerials were investigated in the present study using impedance tube with American Society for Testing Material(ASTM)standards.The sound absorption performances of all natural and all hard processed woods were very poor.It was found that filter mat made by the coconut fibre was the best material for sound absorption improvement of the hard processed woods.The sound absorption performance of the soft processed wood(cork)was better than all natural and all hard processed woods.Among all tested woods,it was found that the cork with attached tea bag made by corn fibre is the best selection for sound absorption application.The transmission loss performances of all natural woods were good.The effects of various materials on the transmission loss performances of all hard processed woods were not very significant.For cork with and without attachment of various materials,their transmission loss performances were not as good as the hard processed woods.Among all tested woods,it was found that Pterocarpus soyauxii and Quercus spp.(natural woods)are the best woods to be used in those applications when prevention of sound transmission is needed.It is recommended that cork is the best wood to be used in those applications where sound absorption and prevention of sound transmission are needed at the same time due to its good sound absorption performance while its ability on prevention of the sound transmission is also acceptable.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金Project supported by the National Natural Science Foundation of China(Nos.11790282,U1534204,and 11472179)the Natural Science Foundation of Hebei Province of China(No.A2016210099)
文摘This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.
基金Project supported by the National Natural Science Foundation of China(Nos.11672104 and11832009)the Natural Science Foundation of Hunan Province of China(Nos.XJT2015408 and2016JJ4027)
文摘As a typical non-smooth bifurcation, grazing bifurcation can induce instability of elementary near-grazing impact periodic motion in impact oscillators. In this paper,the stability for near-grazing period-one impact motion to suppress grazing-induced instabilities is analyzed, based on which, a control strategy is proposed. The commonly-used leading order zero time discontinuity mapping is extended to a higher order one to aid the perturbation analysis of the characteristic equation. It is shown that the degenerate grazing bifurcation can eliminate the singular term in the characteristic equation, leading to bounded eigenvalues. Based on such a precondition, the bounded eigenvalues are further restricted inside the unit circle, and a continuous transition between non-impact and controlled impact motion is observed. One discrete feedback controller that changes the velocity of the oscillator based on the selected Poincar′e sections is adopted to demonstrate the control procedure.
基金Project supported by the Key Program of National Natural Science Foundation of China(No.11832009)the National Natural Science Foundation of China(Nos.11902085 and 12172095)the Natural Science Foundation of Guangdong Province of China(No.2021A1515010320)
文摘Quasi-zero-stiffness(QZS)vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration.However,traditional QZS(T-QZS)vibration isolators usually adopt linear damping,owing to which achieving good isolation performance at both low and high frequencies is difficult.T-QZS isolators exhibit hardening stiffness characteristics,and their vibration isolation performance is even worse than that of linear vibration isolators under a large excitation amplitude.Therefore,this study proposes a QZS isolator with a shear-thinning viscous damper(SVD)to improve the vibration isolation performance of the T-QZS isolators.The force-velocity relation of the SVD is obtained,and a dynamic model is established for the isolator.The dynamic responses of the system are solved using the harmonic balance method(HBM)and the Runge-Kutta method.The vibration isolation performance of the system is evaluated using force transmissibility,and the isolator parameters are analyzed.The results show that compared with the T-QZS isolators,the proposed QZS-SVD isolator achieves the lower initial vibration isolation frequency and peak value,and exhibits better vibration isolation performance at medium and high frequencies.Moreover,the proposed isolator can withstand a large excitation amplitude in the effective vibration isolation range.
基金the Full-time Introduction of National High-level Innovation Talents Research Project of Hebei Province(Grant No.2021HBQZYCSB003)the National Natural Science Foundation of China(Grant No.11832009).
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12172095,11832009,and 12302008)the Natural Science Foundation of Guangdong Province(Grant No.2023A1515011770)Guangzhou Science and Technology Planning Project(Grant Nos.202201010570,202201020239,202201020193,and 202201010399)。
文摘Fail-safe topology optimization is valuable for ensuring that optimized structures remain operable even under damaged conditions.By selectively removing material stiffness in patches with a fixed shape,the complex phenomenon of local failure is modeled in fail-safe topology optimization.In this work,we first conduct a comprehensive study to explore the impact of patch size,shape,and distribution on the robustness of fail-safe designs.The findings suggest that larger sizes and finer distribution of material patches can yield more robust fail-safe structures.However,a finer patch distribution can significantly increase computational costs,particularly for 3D structures.To keep computational efforts tractable,an efficient fail-safe topology optimization approach is established based on the framework of multi-resolution topology optimization(MTOP).Within the MTOP framework,the extended finite element method is introduced to establish a decoupling connection between the analysis mesh and the topology description model.Numerical examples demonstrate that the developed methodology is 2 times faster for 2D problems and over 25 times faster for 3D problems than traditional fail-safe topology optimization while maintaining similar levels of robustness.
基金supported by the National Natural Science Foundation of China(Nos.12032017,11790282).
文摘Under the framework of the small deformation crystal plasticity theory,a crystal plastic cyclic constitutive model for body-centered cubic(BCC)cyclic softening polycrystalline metals is established.The constitutive model introduces the isotropic softening rule that includes two different mechanisms:namely softening under monotonic deformation and softening under cyclic deformation on each slip system.Meanwhile,a modified Armstrong-Frederick nonlinear kinematic hardening rule is adopted.The appropriate explicit scale transition rule is selected to extend the single crystal constitutive model to the polycrystalline constitutive model.Then the model is used to predict the uniaxial and multiaxial ratcheting deformation of BCC axle steel EA4T to verify the rationality of the proposed model.The simulation results indicate that the newly established crystal plasticity model can not only describe the cyclic softening characteristics of BCC axle steel EA4T well,but also reasonably describe the evolution laws of uniaxial ratcheting and nonproportional multiaxial ratcheting deformation.Moreover,the established crystal plastic cyclic constitutive model can reasonably predict the ratcheting behavior of BCC single crystal as well.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.11832009)the National Natural Science Foundation of China(Grant No.12122206).
基金supported by the National Natural Science Foundation of China (Grant Nos.11832009 and 12102132)China Postdoctoral Science Foundation (Grant No.2020M682545)Science and Technology Innovation Program of Hunan Province (Grant No.2020RC2027).
基金supported by the National Natural Science Foundation of China(Grant Nos.11832009,12172095,and 11902085)the Natural Science Foundation of Guangdong Province(Grant No.2021A1515010320)We are also very grateful to the anonymous reviewers for their contributions.
基金supported by the National Natural Science Foundation of China(Grants 11832009 and 11672104)the Chair Professor of Lotus Scholars Program in Hunan province(Grants XJT2015408)。
文摘Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(11972152,11832009)the National Key R&D Program of China(2017YFB1102801)the Laboratory of Science and Technology on Integrated Logistics Support.
文摘In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compliant mechanism.The design optimization on geometric parameters is carried out to fulfil the quasi-zero-stiffness property.The locally resonant metamaterial is formed by periodically arranged unit cells,and the transmittance of longitudinal wave is studied through three aspects:numerical predictions,finite element simulations and experimental tests.The variation trends revealed by these three methods match well with one another:the band gap moves to lower frequency and both its depth and width get smaller and smaller with the increase of pre-compression(Δ).The band gap overlays the frequency range of 73.10–92.38 Hz and 16.78–19.49 Hz atΔ=0mm andΔ=10mm,respectively,providing a wide range of tunability.Besides,the ultralow-frequency band gap can be achieved asΔapproaches 10 mm.This study may provide an avenue for achieving the tunable ultralow-frequency locally resonant band gap.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672104 and 11902085)the Key Program of National Natural Science Foundation of China(Grant No.11832009)the Chair Professor of Lotus Scholars Program in Hunan Province,China(Grant No.XJT2015408).
文摘Topology optimization is a pioneer design method that can provide various candidates with high mechanical properties.However,high resolution is desired for optimum structures,but it normally leads to a computationally intractable puzzle,especially for the solid isotropic material with penalization(SIMP)method.In this study,an efficient,high-resolution topology optimization method is developed based on the super-resolution convolutional neural network(SRCNN)technique in the framework of SIMP.SRCNN involves four processes,namely,refinement,path extraction and representation,nonlinear mapping,and image reconstruction.High computational efficiency is achieved with a pooling strategy that can balance the number of finite element analyses and the output mesh in the optimization process.A combined treatment method that uses 2D SRCNN is built as another speed-up strategy to reduce the high computational cost and memory requirements for 3D topology optimization problems.Typical examples show that the high-resolution topology optimization method using SRCNN demonstrates excellent applicability and high efficiency when used for 2D and 3D problems with arbitrary boundary conditions,any design domain shape,and varied load.
基金supported by the National Natural Science Foundation of China(Grant Nos.11902085 and 11832009)the Science and Technology Association Young Scientific and Technological Talents Support Project of Guangzhou City(Grant No.SKX20210304)the Natural Science Foundation of Guangdong Province(Grant No.2021Al515010320).
文摘Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.
基金the funding of following science foundations:National Natural Science Foundation of China(51975136,51575116,U1601204)China National Spark Program(2015GA780065)+6 种基金The Science and Technology Innovative Research Team Program in Higher Educational Universities of Guangdong Province(2017KCXTD025)The Innovative Academic Team Project of Guangzhou Education System(1201610013)The Science and Technology Planning Project of Guangdong Province(2017A010102014,2016A010102022)The Science and Technology Planning Project of Guangzhou Municipal Government(201707010293)The Water Resource Science and Technology Program of Guangdong Province of China(2012-11)Guangzhou University's 2017 training program for young top-notch personnels(BJ201701)The Postgraduate Education Innovation Program of Guangdong Province(2016SQXX14,2016XSLT24)。
文摘In order to improve sprinkler irrigation quality and promote actual irrigation efficiency,the influence analysis of sprinkler irrigation effectiveness(SIE)using ANFIS(Adaptive Neural Fuzzy Inference System)was implemented to balance moisture infiltration and water redistribution in soil field.Firstly,using a detailed description of governing equations proposed for sprinkler irrigation flow,the theoretical foundation and mathematical model of irrigation effectiveness can be established;Secondly,based on a complete preparation of experimental irrigation conditions,a series of calibration indexes quantifying SIE for sprinkler irrigation quality and infiltration efficiency were proposed;Then thirdly,a novel ANFIS system was designed and introduced to evaluate these key effectiveness indexes in actual working operations,so that a series of detailed influence analysis and comprehensive infiltration assessment focusing on sprinkler irrigation effectiveness could be achieved afterwards,which result to the realization of better infiltration equilibrium and higher water redistribution efficiency in actual irrigation test.Therefore,the qualification of sprinkler irrigation effectiveness was achieved,and in addition,the moisture infiltration improvement and soil moisture uniformity were facilitated also in return.
基金This research is supported by the National Natural Science Foundation of China(11790282,U1534204,11472179)the Natural Science Foundation of Hebei Province(A2016210099).
文摘A crystal-plasticity cyclic constitutive model of polycrystalline material considering intra-granular heterogeneous dislocation substructures,in terms of three dislocation categories:mobile dislocations,immobile dislocations in the cell interiors and in the cell walls,is proposed based on the existing microscopic and macroscopic experimental results.The multiplication,annihilation,rearrangement and immobilization of dislocations on each slip system are taken as the basic evolutionary mechanism of the three dislocation categories,and the cross-slip of screw dislocations is viewed as the dynamic recovery mechanism at room temperature.The slip resistance associated with the isotropic hardening rule results from the interactions of dislocations on the slip systems.Meanwhile,a modified nonlinear kinematic hardening rule and a rate-dependent flow rule at the slip system level are employed to improve the predictive capability of the model for ratchetting deformation.The predictive ability of the developed model to uniaxial and mul-tiaxial ratchetting in macroscopic scale is verified by comparing with the experimental results of polycrystalline 316L stainless steel.The ratchetting in intra-granular scale which is obviously dependent on the crystallographic orientation and stress levels can be reasonably predicted by the proposed model.
基金supported by the National Natural Science Foundation of China(Grant 51908142)the Key Program of National Natural Science Foundation of China(Grant 11832009)the Natural Science Foundation of Guangdong Province(Grants 2019A1515012223).
文摘The sound absorption and sound transmission loss performances of the natural woods,hard and soft processed woods with attachment of the various natural orwastematerials were investigated in the present study using impedance tube with American Society for Testing Material(ASTM)standards.The sound absorption performances of all natural and all hard processed woods were very poor.It was found that filter mat made by the coconut fibre was the best material for sound absorption improvement of the hard processed woods.The sound absorption performance of the soft processed wood(cork)was better than all natural and all hard processed woods.Among all tested woods,it was found that the cork with attached tea bag made by corn fibre is the best selection for sound absorption application.The transmission loss performances of all natural woods were good.The effects of various materials on the transmission loss performances of all hard processed woods were not very significant.For cork with and without attachment of various materials,their transmission loss performances were not as good as the hard processed woods.Among all tested woods,it was found that Pterocarpus soyauxii and Quercus spp.(natural woods)are the best woods to be used in those applications when prevention of sound transmission is needed.It is recommended that cork is the best wood to be used in those applications where sound absorption and prevention of sound transmission are needed at the same time due to its good sound absorption performance while its ability on prevention of the sound transmission is also acceptable.