H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,...H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.展开更多
文摘H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.
文摘连廊作为人流量较大的公共通行区,跨度较大时容易发生舒适性问题,因此有必要采取减振措施来控制由于人行走激励产生的过量振动,改善结构的使用功能。文章对西安站东配楼45 m跨度钢桁架连廊进行人致振动响应计算,得出了结构在正常使用时各工况下的加速度响应情况,根据调谐质量阻尼器的减振原理设计出单频率及多频率的减振装置进行减振控制,并将结果进行对比。结果表明,连廊人致激励下的加速度响应超过舒适度限值,利用单频率TMD(Tuned Mass Damper)系统可以有效改善结构的舒适性能,减振率达81.2%,但控制频带较窄,存在去谐效应,采用多频率MTMD(Multiple TMDs)系统在保证减振效果的同时可以扩大减振频带宽度,具有更强的鲁棒性。