In this study,28,691 genome sequences and16,566 expressed sequence tags(ESTs) of Eucalyptus were derived from the Gen Bank database.A total of 2292 SSR loci were sought out from 1785 effective sequences.Through analys...In this study,28,691 genome sequences and16,566 expressed sequence tags(ESTs) of Eucalyptus were derived from the Gen Bank database.A total of 2292 SSR loci were sought out from 1785 effective sequences.Through analyses of SSR loci information,the SSR motif length was negatively correlated with the abundance of the SSRs.In the EST sequences of Eucalyptus,triplet repeat motifs were the most abundant,and dinucleotide repeats motifs had the highest frequencies.Subsequently,395 pairs of primers were designed based on the SSR loci.Using optimized SSR-PCR conditions,340 pairs of primers were successfully screened,with a success rate of 86.1%.By construction of a maximum likelihood phylogenetic tree of six eucalypt species,represented by five species of the genus Eucalyptus and one of the genus Corymbia,the genetic relationships of Eucalyptus urophylla and E.camaldulensis suggested by this tree was found to differ from that suggested by traditional morphological taxonomy.The results provide insights for evaluating geneticdiversity of Eucalyptus and analysis of Eucalyptus phylogenetics using SSR markers.展开更多
The shuttle effect of soluble lithium polysulfides(LiPSs)between electrodes and slow reaction kinetics lead to extreme inefficiency and poor high current cycling stability,which limits the commercial application of Li...The shuttle effect of soluble lithium polysulfides(LiPSs)between electrodes and slow reaction kinetics lead to extreme inefficiency and poor high current cycling stability,which limits the commercial application of Li-S batteries.Herein,the multi-dimensional composite frame has been proposed as the modified separator(MCCoS/PP)of Li-S battery,which is composed of CoS_(2) nanoparticles on alkali-treated MXene nanosheets and carbon nanotubes.Both experiments and theoretical calculations show that bifunctional catalytic activity can be achieved on the MCCoS/PP separator.It can not only promote the liquid-solid conversion in the reduction process,but also accelerate the decomposition of insoluble Li_(2)S in the oxidation process.In addition,LiPSs shuttle effect has been inhibited without a decrease in lithium-ion transference numbers.Simultaneously,the MCCoS/PP separator with good LiPSs adsorption capability arouses redistribution and fixing of active substances,which is also beneficial to the rate performance and cycling stability.The Li-S batteries with the MCCoS/PP separator have a specific capacity of 368.6 mAh g^(−1) at 20C,and the capacity decay per cycle is only 0.033%in 1000 cycles at 7C.Also,high area capacity(6.34 mAh cm^(−2))with a high sulfur loading(7.7 mg cm^(−2))and a low electrolyte/sulfur ratio(7.5μL mg^(−1))is achieved.展开更多
Over the past 30 years,additive manufacturing(AM)has developed rapidly and has demonstrated great potential in biomedical applications.AM is a materials-oriented manufacturing technology,since the solidification mecha...Over the past 30 years,additive manufacturing(AM)has developed rapidly and has demonstrated great potential in biomedical applications.AM is a materials-oriented manufacturing technology,since the solidification mechanism,architecture resolution,post-treatment process,and functional application are based on the materials to be printed.However,3D printable materials are still quite limited for the fabrication of bioimplants.In this work.2D/3D AM materials for bioimplants are reviewed.Furthermore,inspired by Tai Chi,a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group.With the development of multi-material printing technology,the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.展开更多
AIM:To evaluate the potential of two trabecular meshwork(TM)-specific promoters,Chitinase 3-like 1(Ch3L1)and matrix gla protein(MGP),for improving specificity and safety in glaucoma gene therapy based on self-compleme...AIM:To evaluate the potential of two trabecular meshwork(TM)-specific promoters,Chitinase 3-like 1(Ch3L1)and matrix gla protein(MGP),for improving specificity and safety in glaucoma gene therapy based on self-complementary AAV2(scAAV2)vector technologies.METHODS:An scAAV2 vector with C3 transferase(C3)as the reporter gene(scAAV2-C3)was selected.The scAAV2-C3 vectors were driven by Ch3L1(scAAV2-Ch3L1-C3),MGP(scAAV2-MGP-C3),enhanced MGP(scAAV2-eMGP-C3)and cytomegalovirus(scAAV2-CMV-C3),respectively.The cultured primary human TM cells were treated with each vector at different multiplicities of infections.Changes in cell morphology were observed by phase contrast microscopy.Actin stress fibers and Rho GTPases/Rho-associated protein kinase pathway-related molecules were assessed by immunofluorescence staining,real-time quantitative polymerase chain reaction and Western blot.Each vector was injected intracamerally into the one eye of each rat at low and high doses respectively.In vivo green fluorescence was visualized by a Micron III Retinal Imaging Microscope.Intraocular pressure(IOP)was monitored using a rebound tonometer.Ocular responses were evaluated by slit-lamp microscopy.Ocular histopathology analysis was examined by hematoxylin and eosin staining.RESULTS:In TM cell culture studies,the vectormediated C3 expression induced morphologic changes,disruption of actin cytoskeleton and reduction of fibronectin expression in TM cells by inhibiting the Rho GTPases/Rhoassociated protein kinase signaling pathway.At the same dose,these changes were significant in TM cells treated with scAAV2-CMV-C3 or scAAV2-Ch3L1-C3,but not in cells treated with scAAV2-eMGP-C3 or scAAV2-MGP-C3.At lowinjected dose,the IOP was significantly decreased in the scAAV2-Ch3L1-C3-injected eyes but not in scAAV2-MGPC3-injected and scAAV2-eMGP-C3-injected eyes.At highinjected dose,significant IOP reduction was observed in the scAAV2-eMGP-C3-injected eyes but not in scAAV2-MGP-C3-injected eyes.Similar to scAAV2-CMV-C3,scAAV2-Ch3L1-C3 vector showed efficient transduction both in the TM and corneal endothelium.In anterior segment tissues of scAAV2-eMGP-C3-injected eyes,no obvious morphological changes were found except for the TM.Inflammation was absent.CONCLUSION:In scAAV2-transduced TM cells,the promoter-driven efficiency of Ch3L1 is close to that of cytomegalovirus,but obviously higher than that of MGP.In the anterior chamber of rat eye,the transgene expression pattern of scAAV2 vector is presumably affected by MGP promoter,but not by Ch3L1 promoter.These findings would provide a useful reference for improvement of specificity and safety in glaucoma gene therapy using scAAV2 vector.展开更多
Micro-supercapacitors(MSCs)are attractive electrochemical energy storage devices owing to their high power density and extended cycling stability.However,relatively low areal energy density still hinders their practic...Micro-supercapacitors(MSCs)are attractive electrochemical energy storage devices owing to their high power density and extended cycling stability.However,relatively low areal energy density still hinders their practical applications.Here,an asymmetric Mg ion MSC with promising high energy density is fabricated.Firstly,indium tin oxide(ITO)NWs were synthesized by chemical vapor deposition as the excellent current collector.Subsequently,nanostructured Mn_(3)O_(4)and Ppy@FeOOH were deposited on the laser-engraved interdigital structure ITO NWs electrodes as the positive and negative electrodes,respectively.Beneficial from the hierarchical micro-nano structures of active materials,high conductive electron transport pathways,and charge-balanced asymmetric electrodes,the obtained MSC possesses a high potential window of 2.2 V and a high areal capacitance of 107.3 mF cm^(-2)at 0.2 mA cm^(-2).The insitu XRD,VSM,and ex-situ XPS results reveal that the primary energy storage mechanism of Mg ions in negative FeOOH electrode is Mg ions de-/intercalation and phase transition reaction of FeOOH.Furthermore,the MSC exhibits a high specific energy density of 71.18μWh cm^(-2)at a power density of 0.22 mWh cm^(-2)and capacitance retention of 85%after 5000 cycles with unvaried Coulombic efficiency.These results suggest promising applications of our MSC in miniaturized energy storage devices.展开更多
Calcium aluminate cement(CAC)bonded corundum based castables were prepared using tabular corundum and activated alumina as the starting materials,CAC as the binder,zinc hydroxide(Zn(OH)_(2))and basic zinc carbonate(BZ...Calcium aluminate cement(CAC)bonded corundum based castables were prepared using tabular corundum and activated alumina as the starting materials,CAC as the binder,zinc hydroxide(Zn(OH)_(2))and basic zinc carbonate(BZC)as the ZnO precursors.The effects of the two ZnO precursors on the phase composition and the microstructure of the CAC bonded corundum based castable matrix specimens were analyzed,and the reasons affecting the hot performance of the castables were studied.The results show that Zn(OH)_(2) with a smaller particle size(d_(50)=1.26μm)is prone to agglomerate during sample preparation and generates ZnAl_(2)O_(4) spinel grains after firing,hindering the growth of CA_(6),thus decreasing the mechanical strength of the castables.BZC with a larger particle size(d_(50)=2.91μm),which shows a sound dispersity,in-situ generates nano-sized ZnO after firing,and ZnO or Zn^(2+)diffuses into calcium aluminates,promoting the sintering of CA_(2) and CA_(6),thereby enhancing the hot properties of the CAC-bonded corundum based castables.展开更多
This paper is concerned with some chaotic properties of a kind of coupled map lattices, which is proposed by Kaneko. First, this research discussed the sensitivity, infinite sensitivity, transitivity, accessibility, d...This paper is concerned with some chaotic properties of a kind of coupled map lattices, which is proposed by Kaneko. First, this research discussed the sensitivity, infinite sensitivity, transitivity, accessibility, densely Li-Yorke sensitivity and exact of coupled map lattices. Then, some sufficient conditions under which <img src="Edit_c0fc315a-d176-4c9e-9e41-5cb6bc6d679d.bmp" alt="" /> is Kato chaotic, positive entropy chaotic and Ruelle-Takens chaos are obtained.展开更多
基金funded by the Special Fund for Forestry Scientific Research in the Public Interest(201504204)
文摘In this study,28,691 genome sequences and16,566 expressed sequence tags(ESTs) of Eucalyptus were derived from the Gen Bank database.A total of 2292 SSR loci were sought out from 1785 effective sequences.Through analyses of SSR loci information,the SSR motif length was negatively correlated with the abundance of the SSRs.In the EST sequences of Eucalyptus,triplet repeat motifs were the most abundant,and dinucleotide repeats motifs had the highest frequencies.Subsequently,395 pairs of primers were designed based on the SSR loci.Using optimized SSR-PCR conditions,340 pairs of primers were successfully screened,with a success rate of 86.1%.By construction of a maximum likelihood phylogenetic tree of six eucalypt species,represented by five species of the genus Eucalyptus and one of the genus Corymbia,the genetic relationships of Eucalyptus urophylla and E.camaldulensis suggested by this tree was found to differ from that suggested by traditional morphological taxonomy.The results provide insights for evaluating geneticdiversity of Eucalyptus and analysis of Eucalyptus phylogenetics using SSR markers.
基金This work was financially supported by the Gansu Provincial Natural Science Foundation of China(Nos.21JR7RA493,17JR5RA198,2020HZ-2,21JR7RA470)the Cooperation project of Gansu Academy of Sciences(2020HZ-2)+3 种基金the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2018-119,lzujbky-2018-ct08,lzujbky-2019-it23)Key Areas Scientific and Technological Research Projects in Xinjiang Production and Construction Corps(No.2018AB004)Hubei University of Arts and Science(No.2020kypytd002)Xiangyang Science and Technology Research and Development(No.2020YL09).
文摘The shuttle effect of soluble lithium polysulfides(LiPSs)between electrodes and slow reaction kinetics lead to extreme inefficiency and poor high current cycling stability,which limits the commercial application of Li-S batteries.Herein,the multi-dimensional composite frame has been proposed as the modified separator(MCCoS/PP)of Li-S battery,which is composed of CoS_(2) nanoparticles on alkali-treated MXene nanosheets and carbon nanotubes.Both experiments and theoretical calculations show that bifunctional catalytic activity can be achieved on the MCCoS/PP separator.It can not only promote the liquid-solid conversion in the reduction process,but also accelerate the decomposition of insoluble Li_(2)S in the oxidation process.In addition,LiPSs shuttle effect has been inhibited without a decrease in lithium-ion transference numbers.Simultaneously,the MCCoS/PP separator with good LiPSs adsorption capability arouses redistribution and fixing of active substances,which is also beneficial to the rate performance and cycling stability.The Li-S batteries with the MCCoS/PP separator have a specific capacity of 368.6 mAh g^(−1) at 20C,and the capacity decay per cycle is only 0.033%in 1000 cycles at 7C.Also,high area capacity(6.34 mAh cm^(−2))with a high sulfur loading(7.7 mg cm^(−2))and a low electrolyte/sulfur ratio(7.5μL mg^(−1))is achieved.
基金This work was supported by the National Key R&D Program of China(2017YFA0204403)the Major Program of the National Natural Science Foundation of China(51590892)+3 种基金the General Research Fund Research Grants Council(Hong Kong)(CityU 11209918)the Hong Kong Collaborative Research Fund Scheme(C4026-17W)the Hong Kong Theme-based Research Scheme(T13-402/17-N)the Shenzhen-Hong Kong cooperation zone for technology and innovation(HZQB-KCZYB-2020030).
文摘Over the past 30 years,additive manufacturing(AM)has developed rapidly and has demonstrated great potential in biomedical applications.AM is a materials-oriented manufacturing technology,since the solidification mechanism,architecture resolution,post-treatment process,and functional application are based on the materials to be printed.However,3D printable materials are still quite limited for the fabrication of bioimplants.In this work.2D/3D AM materials for bioimplants are reviewed.Furthermore,inspired by Tai Chi,a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group.With the development of multi-material printing technology,the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.
基金Supported by the National Natural Science Foundation of China(No.81900829,No.82070963)the Xiamen Medical and Health Guiding Project Fund Project(No.3502Z20214ZD1214)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011234)the Science and Technology Innovation Committee of Shenzhen(No.JCYJ20210324125614039)。
文摘AIM:To evaluate the potential of two trabecular meshwork(TM)-specific promoters,Chitinase 3-like 1(Ch3L1)and matrix gla protein(MGP),for improving specificity and safety in glaucoma gene therapy based on self-complementary AAV2(scAAV2)vector technologies.METHODS:An scAAV2 vector with C3 transferase(C3)as the reporter gene(scAAV2-C3)was selected.The scAAV2-C3 vectors were driven by Ch3L1(scAAV2-Ch3L1-C3),MGP(scAAV2-MGP-C3),enhanced MGP(scAAV2-eMGP-C3)and cytomegalovirus(scAAV2-CMV-C3),respectively.The cultured primary human TM cells were treated with each vector at different multiplicities of infections.Changes in cell morphology were observed by phase contrast microscopy.Actin stress fibers and Rho GTPases/Rho-associated protein kinase pathway-related molecules were assessed by immunofluorescence staining,real-time quantitative polymerase chain reaction and Western blot.Each vector was injected intracamerally into the one eye of each rat at low and high doses respectively.In vivo green fluorescence was visualized by a Micron III Retinal Imaging Microscope.Intraocular pressure(IOP)was monitored using a rebound tonometer.Ocular responses were evaluated by slit-lamp microscopy.Ocular histopathology analysis was examined by hematoxylin and eosin staining.RESULTS:In TM cell culture studies,the vectormediated C3 expression induced morphologic changes,disruption of actin cytoskeleton and reduction of fibronectin expression in TM cells by inhibiting the Rho GTPases/Rhoassociated protein kinase signaling pathway.At the same dose,these changes were significant in TM cells treated with scAAV2-CMV-C3 or scAAV2-Ch3L1-C3,but not in cells treated with scAAV2-eMGP-C3 or scAAV2-MGP-C3.At lowinjected dose,the IOP was significantly decreased in the scAAV2-Ch3L1-C3-injected eyes but not in scAAV2-MGPC3-injected and scAAV2-eMGP-C3-injected eyes.At highinjected dose,significant IOP reduction was observed in the scAAV2-eMGP-C3-injected eyes but not in scAAV2-MGP-C3-injected eyes.Similar to scAAV2-CMV-C3,scAAV2-Ch3L1-C3 vector showed efficient transduction both in the TM and corneal endothelium.In anterior segment tissues of scAAV2-eMGP-C3-injected eyes,no obvious morphological changes were found except for the TM.Inflammation was absent.CONCLUSION:In scAAV2-transduced TM cells,the promoter-driven efficiency of Ch3L1 is close to that of cytomegalovirus,but obviously higher than that of MGP.In the anterior chamber of rat eye,the transgene expression pattern of scAAV2 vector is presumably affected by MGP promoter,but not by Ch3L1 promoter.These findings would provide a useful reference for improvement of specificity and safety in glaucoma gene therapy using scAAV2 vector.
基金supported by the National Natural Science Foundation of China(No.51972154)the Natural Science Foundation of Gansu Province(No.20JR5RA244)。
文摘Micro-supercapacitors(MSCs)are attractive electrochemical energy storage devices owing to their high power density and extended cycling stability.However,relatively low areal energy density still hinders their practical applications.Here,an asymmetric Mg ion MSC with promising high energy density is fabricated.Firstly,indium tin oxide(ITO)NWs were synthesized by chemical vapor deposition as the excellent current collector.Subsequently,nanostructured Mn_(3)O_(4)and Ppy@FeOOH were deposited on the laser-engraved interdigital structure ITO NWs electrodes as the positive and negative electrodes,respectively.Beneficial from the hierarchical micro-nano structures of active materials,high conductive electron transport pathways,and charge-balanced asymmetric electrodes,the obtained MSC possesses a high potential window of 2.2 V and a high areal capacitance of 107.3 mF cm^(-2)at 0.2 mA cm^(-2).The insitu XRD,VSM,and ex-situ XPS results reveal that the primary energy storage mechanism of Mg ions in negative FeOOH electrode is Mg ions de-/intercalation and phase transition reaction of FeOOH.Furthermore,the MSC exhibits a high specific energy density of 71.18μWh cm^(-2)at a power density of 0.22 mWh cm^(-2)and capacitance retention of 85%after 5000 cycles with unvaried Coulombic efficiency.These results suggest promising applications of our MSC in miniaturized energy storage devices.
文摘Calcium aluminate cement(CAC)bonded corundum based castables were prepared using tabular corundum and activated alumina as the starting materials,CAC as the binder,zinc hydroxide(Zn(OH)_(2))and basic zinc carbonate(BZC)as the ZnO precursors.The effects of the two ZnO precursors on the phase composition and the microstructure of the CAC bonded corundum based castable matrix specimens were analyzed,and the reasons affecting the hot performance of the castables were studied.The results show that Zn(OH)_(2) with a smaller particle size(d_(50)=1.26μm)is prone to agglomerate during sample preparation and generates ZnAl_(2)O_(4) spinel grains after firing,hindering the growth of CA_(6),thus decreasing the mechanical strength of the castables.BZC with a larger particle size(d_(50)=2.91μm),which shows a sound dispersity,in-situ generates nano-sized ZnO after firing,and ZnO or Zn^(2+)diffuses into calcium aluminates,promoting the sintering of CA_(2) and CA_(6),thereby enhancing the hot properties of the CAC-bonded corundum based castables.
文摘This paper is concerned with some chaotic properties of a kind of coupled map lattices, which is proposed by Kaneko. First, this research discussed the sensitivity, infinite sensitivity, transitivity, accessibility, densely Li-Yorke sensitivity and exact of coupled map lattices. Then, some sufficient conditions under which <img src="Edit_c0fc315a-d176-4c9e-9e41-5cb6bc6d679d.bmp" alt="" /> is Kato chaotic, positive entropy chaotic and Ruelle-Takens chaos are obtained.