This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional ...This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional boundary element method,and can be treated as a potential approach for solving the inverse problems of the heat conduction owing to the boundary-only discretization and semi-analytical algorithm.When the VBEM is applied to the inverse problems,the numerical instability may occur if a virtual boundary is not properly chosen.The method encounters a highly illconditioned matrix for the larger distance between the physical boundary and the virtual boundary,and otherwise is hard to avoid the singularity of the source point.Thus,it must adopt an appropriate regularization method to deal with the ill-posed systems of inverse problems.In this study,the VBEM and different regularization techniques are combined to model the inverse problem of three-dimensional heat conduction in orthotropic media.The proper regularization techniques not only make the virtual boundary to be allocated freer,but also solve the ill-conditioned equation of the inverse problem.Numerical examples demonstrate that the proposed method is efficient,accurate and numerically stable for solving the inverse problems of three-dimensional heat conduction in orthotropic media.展开更多
This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and...This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.展开更多
基金This study was supported by“the Fundamental Research Funds for the Central Universities”(Grant No.2015B37814)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYLX15_0489)+1 种基金the National Natural Science Foundation of China(Grant No.51679081)“the Fundamental Research Funds for the Central Universities”(Grant No.2018B48514).
文摘This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional boundary element method,and can be treated as a potential approach for solving the inverse problems of the heat conduction owing to the boundary-only discretization and semi-analytical algorithm.When the VBEM is applied to the inverse problems,the numerical instability may occur if a virtual boundary is not properly chosen.The method encounters a highly illconditioned matrix for the larger distance between the physical boundary and the virtual boundary,and otherwise is hard to avoid the singularity of the source point.Thus,it must adopt an appropriate regularization method to deal with the ill-posed systems of inverse problems.In this study,the VBEM and different regularization techniques are combined to model the inverse problem of three-dimensional heat conduction in orthotropic media.The proper regularization techniques not only make the virtual boundary to be allocated freer,but also solve the ill-conditioned equation of the inverse problem.Numerical examples demonstrate that the proposed method is efficient,accurate and numerically stable for solving the inverse problems of three-dimensional heat conduction in orthotropic media.
基金Supported by the National Natural Science Foundation of China(50978083)the Fundamental Research Funds for the Central Universities(2010B02814)
文摘This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.