期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of Flow Directions on Multiphase Flow Boiling Heat Transfer Enhanced by Suspending Particles in a Circulating Evaporation System 被引量:4
1
作者 Feng Jiang Teng Jiang +1 位作者 guopeng qi Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第3期201-213,共13页
A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental invest... A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental investigations were carried out by varying amount of added particles(0-2%), circulation flow rate(2.15-5.16 m^3/h) and heat flux(8-16 kW/m^2). The comparison of heat transfer performance in different vertical heights of the horizontal bed was also discussed. Results reveal that the glass bead particle can enhance heat transfer compared with vapor-liquid two-phase flow for all beds. At a low heat flux(q = 8 kW/m), the heat-transfer-enhancing factor of the horizontal bed is obviously greater than those of the up-flow and down-flow beds. With the increase in the amount of added particles, the heat-transfer-enhancing factors of the up-flow and down-flow beds increase, whereas that of the horizontal bed initially increases and then decreases. However, at a high heat flux(q=16 kW/m), the heat-transfer-enhancing factors of the three beds show an increasing tendency with the increase in the amount of added particles and become closer than those at a low heat flux. For all beds, the heat-transfer-enhancing factor generally increases with the circulation flow rate but decreases with the increase in heat flux. 展开更多
关键词 Heat transfer enhancement CIRCULATING fluidized BED EVAPORATOR FLOW direction DOWN-FLOW BED UP-FLOW BED Horizontal BED
下载PDF
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
2
作者 Feng Jiang Siyao Lv +2 位作者 guopeng qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 Pressure drop Liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE Heat transfer enhancement FOULING prevention DESCALING
下载PDF
Particle collision behavior and heat transfer performance in a Na_(2)SO_(4) circulating fluidized bed evaporator
3
作者 Feng Jiang Di Xu +2 位作者 Ruijia Li guopeng qi Xiulun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第6期40-52,共13页
The particle collision behavior and heat transfer performance are investigated to reveal the heat transfer enhancement and fouling prevention mechanism in a Na_(2)SO_(4) circulating fluidized bed evaporator.The partic... The particle collision behavior and heat transfer performance are investigated to reveal the heat transfer enhancement and fouling prevention mechanism in a Na_(2)SO_(4) circulating fluidized bed evaporator.The particle collision signals are analyzed with standard deviation by varying the amount of added particles ε(1%–3%),circulation flow velocity u(0.37–1.78 m·s^(-1)),and heat flux q(7.29–12.14 kW·m^(-2)).The results show that the enhancement factor reach up to 14.6%by adding polytetrafluoroethylene particles at ε=3%,u=1.78 m·s^(-1),and q=7.29 kW·m^(-2).Both the standard deviation of the particle collision signal and enhancement factor increase with the increase in the amount of added particles.The standard deviation increases with the increase in circulation flow velocity;however,the enhancement factor initially decreases and then increases.The standard deviation slightly decreases with the increase in heat flux at low circulation flow velocity,but initially increases and then decreases at high circulation flow velocity.The enhancement factor decreases with the increase in heat flux.The enhancement factor in Na_(2)SO_(4) solution is superior to that in water at high amount of added particles.The empirical correlation for heat transfer is established,and the model results agree well with the experimental data. 展开更多
关键词 Heat transfer enhancement Particle collision behavior Circulating fluidized bed EVAPORATION NA2SO4 Standard deviation
下载PDF
Effects of particle type on the particle fluidization and distribution in a liquid–solid circulating fluidized bed boiler
4
作者 Feng Jiang Xiao Li +1 位作者 guopeng qi Xiulun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期53-66,共14页
A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four type... A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established. 展开更多
关键词 Circulating fluidized bed boiler Particle type Particle distribution Visualization Fouling prevention
下载PDF
Heat Transfer Characteristics and Pressure Drop in a Horizontal Circulating Fluidized Bed Evaporator
5
作者 Xu Liang Feng Jiang +5 位作者 guopeng qi Jinjin Wang Xinhua Dong Wenyue Jing Ruijia Li Xiulun Li 《Transactions of Tianjin University》 EI CAS 2021年第6期487-504,共18页
A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount o... A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed. 展开更多
关键词 Heat transfer characteristics Pressure drop Horizontal circulating fluidized bed evaporator Vertical heights Fouling prevention and removal
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部