The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples mu...A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining.展开更多
As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performa...As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.展开更多
To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic s...To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.展开更多
Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution ...Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.展开更多
With the depletion of easily minable coal seams,less favorable reserves under adverse conditions have to be mined out to meet the market demand.Due to some historical reasons,large amount of remnant coal was left unre...With the depletion of easily minable coal seams,less favorable reserves under adverse conditions have to be mined out to meet the market demand.Due to some historical reasons,large amount of remnant coal was left unrecovered.One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine,Shanxi Province,China.The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between.The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC).The remnant coal pillar was induced to cave in as top coal in LTCC system.Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata.The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars.And the gob development(roof strata cave-in)is intermittent with the cave-in of these coal pillars and the sandstone dirt band.FLAC3D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels.The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found.It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.展开更多
To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.Th...To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.The "backfilling body-immediate roof" cooperative bearing structure of CBCM is analyzed by establishing the model of the medium thick plate on an elastic foundation.The influence of the backfilling rate on the stability of overlying strata is analyzed by the numerical simulation experiment.The control effect of CBCM is verified by a physic similar simulation test.The economic benefit of CBCM is analyzed.The conclusions are:the deformation characteristics of the immediate roof and critical backfilling spacing in CBCM can be analyzed based on the Hu Haichang’s theory.Exerting the bearing capacity of the immediate roof is beneficial to the stability of the overlying strata.The CBCM has a good control effect on the overburden in Xinyang Mine when the backfilling rate is lower than 25%.The backfilling cost of per ton coal is 37.39 yuan/t when the backfilling rate is 13.7%,with a decrease rate of 56.63%than the full-filling.The research results can provide theoretical support for the application of CBCM in coal mining.展开更多
With the popularity of the internet,users hope to better protect their privacy while obtaining network services.However,in the traditional centralized authentication scheme,identity information such as the user's ...With the popularity of the internet,users hope to better protect their privacy while obtaining network services.However,in the traditional centralized authentication scheme,identity information such as the user's private key is generated,stored,and managed by the network operator.Users can't control their identity information,which will lead to a great threat to the privacy of users.Based on redactable blockchain,we propose a fine-grained and fair identity authentication scheme for mobile networks.In our proposed scheme,the user's identity information is generated and controlled by the users.We first propose a notion of score chameleon hash(SCH),which can delete or update the information of illegal users so as to dynamically update the status of users and provide users with more fine-grained and fair services.We propose another notion of self-updating secret sharing(SUSS),which allows users to update the trapdoor and the corresponding hash key after redacting the blockchain without requiring trusted authority to redistribute the trapdoor.Experimental results show that,compared with the immutable blockchain Bitcoin,the redactable blockchain in our identity authentication scheme provides users with fine-grained and fair redacting functions,and can be adopted with a small additional overhead.展开更多
A variety of dust control methods are often applied in coal mines,among which the application of wet scrubbers has proven to be an efficient technology for the removal of dust in airstreams,rather than diluting or con...A variety of dust control methods are often applied in coal mines,among which the application of wet scrubbers has proven to be an efficient technology for the removal of dust in airstreams,rather than diluting or confining the dust.In this paper,a wet scrubber design was developed.Based on a self-designed experimental test platform,the total dust concentration,respirable dust concentration,air volume,and average pressure drops of wet scrubbers with 12,16,20,and 24 blades were measured under different water intake conditions.The results show that the different water intake levels have only minimal effects on the air volume of the wet scrubbers.However,increased water intake had improved the dust removal efficiency of the wet scrubbers with the same number of blades.The wet scrubber with 16 blades was found to have the best dust removal efficiency at a water intake level of 1.35 m^(3)/h.Its total dust and respirable dust removal efficiency reached 96.81%and 95.59%,respectively.The air volume was 200.4 m^(3)/min,and the average pressure drop was determined to be 169.4 Pa.In addition,when the wet scrubber with 16 blades was applied in a coal preparation plant in China's Shanxi Province,it was observed that the total dust concentration had fallen below 8.1 mg/m^(3),and the respirable dust concentration had fallen below 5.9 mg/m^(3).Therefore,the results obtained in this research investigation provide important references for the use of wet scrubbers to improve coal production environmental conditions.展开更多
The effect of calcination temperature on the pozzolanic activity of maize straw stem ash(MSSA)was evaluated.The MSSA samples calcined at temperature values of 500,700,and 850℃ were dissolved in portlandite solution f...The effect of calcination temperature on the pozzolanic activity of maize straw stem ash(MSSA)was evaluated.The MSSA samples calcined at temperature values of 500,700,and 850℃ were dissolved in portlandite solution for 6 h,thereby obtaining residual samples.The MSSA and MSSA residual samples were analyzed using Fourier transform infrared spectroscopy,X-ray powder diffraction scanning electron microscopy,and X-ray photoelectron spectroscopy to determine vibration bonds,minerals,microstructures,and Si 2p transformation behavior.The conductivity,pH value,and loss of conductivity with dissolving time of the MSSA-portlandite mixed solution were also determined.The main oxide composition of MSSA was silica and potassium oxide.The dissolution of the Si^(4+) content of MSSA at 500℃ was higher than those of the other calcination temperatures.The conductivity and loss of conductivity of MSSA at 700℃ were higher than those of the other calcination temperatures at a particular dissolving time due to the higher KCl content in MSSA at 700℃.C-S-H was easily identified in MSSA samples using X-ray powder diffraction,and small cubic and nearly spherical particles of C-S-H were found in the MSSA residual samples.In conclusion,the optimum calcination temperature of MSSA having the best pozzolanic activity is 500℃,but excessive agglomeration must be prevented.展开更多
Digital watermark embeds information bits into digital cover such as images and videos to prove the creator’s ownership of his work.In this paper,we propose a robust image watermark algorithm based on a generative ad...Digital watermark embeds information bits into digital cover such as images and videos to prove the creator’s ownership of his work.In this paper,we propose a robust image watermark algorithm based on a generative adversarial network.This model includes two modules,generator and adversary.Generator is mainly used to generate images embedded with watermark,and decode the image damaged by noise to obtain the watermark.Adversary is used to discriminate whether the image is embedded with watermark and damage the image by noise.Based on the model Hidden(hiding data with deep networks),we add a high-pass filter in front of the discriminator,making the watermark tend to be embedded in the mid-frequency region of the image.Since the human visual system pays more attention to the central area of the image,we give a higher weight to the image center region,and a lower weight to the edge region when calculating the loss between cover and embedded image.The watermarked image obtained by this scheme has a better visual performance.Experimental results show that the proposed architecture is more robust against noise interference compared with the state-of-art schemes.展开更多
Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goa...Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.展开更多
In the present study,a numerical simulation method was adopted in order to examine the characteristics of dust dispersion during continuous dust release periods(CRP)and stop dust release periods(SRP).The purpose was t...In the present study,a numerical simulation method was adopted in order to examine the characteristics of dust dispersion during continuous dust release periods(CRP)and stop dust release periods(SRP).The purpose was to analyze the dust distributions and migration actions around road-header drivers in excavation roadways,and then determine effective dust control measures for underground coal mines.This study’s simulation results showed that the dust concentrations continuously increased,and then gradually reached a stability level during the CRP.During that time,the locations of the drivers were always at the intersection of the original migration dust and the backflow dust,and the drivers were invaded by these two strands dust.However,during the SRP,the dust concentrations gradually decreased under the actions of the roadway ventilation.Besides,obvious backflow phenomena were observed around the road-header during the SRP.The locations of the drivers were still within the backflow paths of the high dust concentrations.At the present time,dust separation and extraction systems have been implemented in coal mines,including vacuuming and air knife devices,which are designed to control the dust around the road-header drivers.The field applications of these systems were conducted in the 26 mechanized excavation faces of the Zhangcun Coal Mine.The results revealed that the use of these dust removal systems could effectively reduce the dust concentrations around the road-header drivers.In the present study,the dust removal rates during the CRP and SRP were determined to reach up to 88.7% and 94.6%,respectively.Therefore,the results of this research study provided effective theoretical guidance of the characteristics of dust distributions in coal mines,and introduced effective control methods for the hazardous dust concentrations around road-header drivers during the excavation process.展开更多
A critical issue in image interpolation is preserving edge detail and texture information in images when zooming. In this paper, we propose a novel adaptive image zooming algorithm using weighted least-square estimati...A critical issue in image interpolation is preserving edge detail and texture information in images when zooming. In this paper, we propose a novel adaptive image zooming algorithm using weighted least-square estimation that can achieve arbitrary integer-ratio zoom (WLS-AIZ) For a given zooming ratio n, every pixel in a low-resolution (LR) image is associated with an n x n block of high-resolution (HR) pixels in the HR image. In WLS-AIZ, the LR image is interpolated using the bilinear method in advance. Model parameters of every n×n block are worked out through weighted least-square estimation. Subsequently, each pixel in the n × n block is substituted by a combination of its eight neighboring HR pixels using estimated parameters. Finally, a refinement strategy is adopted to obtain the ultimate HR pixel values. The proposed algorithm has significant adaptability to local image structure. Extensive experiments comparing WLS-AIZ with other state of the art image zooming methods demonstrate the superiority of WLS-AIZ. In terms of peak signal to noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM), WLS-AIZ produces better results than all other image integer-ratio zoom algorithms.展开更多
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
基金supported by the Shanxi Science and Technology Major Project (No.20201102004)the Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)+2 种基金the National Natural Science Foundation of China (Nos.52174125,52004171,and 51904203)the Outstanding Youth Cultivation Project in Shanxi Province,China (No.202103021222008)the Key Science and Technology Innovation Team of“1331”Project in Shanxi Province,China,and the Open Fund Project of Key Laboratory of Mining Disaster Prevention and Control (No.MDPC202004)。
文摘A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining.
基金sponsored by the National Natural Science Foundation of China(Grant No.51974192)the Distinguished Youth Funds of National Natural Science Foundation of China(Grant No.51925402)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering Project(2021SX-TD001).
文摘As a kind of green concrete,the mechanical properties and durability of cemented gangue backfill material(CGBM)will be affected if they are in acid mine water with sulfate ions in the long term.To improve the performance of CGBM in acid mine water with sulfate ions,CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days.The changes of mass,ultrasonic pulse velocity(UPV)and compressive strength of the specimens at different ages were analyzed.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used to analyze the microstructure and composition of the specimens.The results show that incorporation of barium hydroxide into CGBM specimen can promote the formation of barium sulfate precipitation and inhibit the generation of corrosion products such as ettringite.Meanwhile,barium sulfate precipitation blocks the pore channel invaded by sulfuric acid solution,delaying the progress of corrosion reaction and making the interior of CGBM specimen more complete.And the specimen with 2.0 kg/m^(3)barium hydroxide was more effective in improving performance.This study provides a basis for the ratio design of CGBM in acid mine water with sulfate ions.
基金supported by the National Natural Science Foundation of China(No.51974192)Shanxi Province Postgraduate Education Innovation Project(No.2020SY567)+2 种基金the Applied Basic Research Project of Shanxi Province(No.201801D121092)Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)Shanxi Science and Technology Major Project(No.20201102004)。
文摘To investigate the creep and instability properties of a cemented gangue backfill column under a highstress area,the uniaxial compression creep tests were conducted by single-step and multi-step loading of prismatic samples made of cemented gangue backfill material(CGBM)under the high stressstrength ratio.The creep damage was monitored using an electrical resistivity device,ultrasonic testing device,and acoustic emission(AE)instrument.The results showed that the CGBM sample has a creep hardening property.The creep failure strength(CFS)is slightly larger than the uniaxial compressive strength(UCS),ranging in ratio from 108.9%to 116.5%.The instantaneous strain,creep strain,and creep rate increase with increasing stress-strength ratio in the single-step loading creep tests.The instantaneous strain and creep strain decrease first and then increase during the multi-step loading creep process.The axial creep strain of the CGBM column can be expressed by the viscoelastic-plastic creep model.Creep instability is caused by the accumulation of strain energy under multi-step loading and the continuous lateral expansion at the unconstrained middle position during the creep process.The creep stability of a CGBM column in a high-stress area can be monitored based on the variation of electrical resistivity,ultrasonic pulse velocity(UPV),and AE signals.
基金This work was supported by the National Natural Science Foundation of China,Young Scientists Fund(No.51804209)NSFC-Shanxi Joint Fund for Coal-Based Low-Carbon Technology(No.U1710258)Shanxi Applied Basic Research Programs,Science and Technology Foundation for Youths(No.201801D221363).THX.
文摘Angle of break(AOB)is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel.It has a significant influence on stress redistribution both in the gob and abutment.Throughout numerical simulation investigations up to now,little attention has been paid to it or an AOB of 90°was used,which however,is not realistic.This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine.The AOB was obtained through cross-measure boreholes.Hoek-Brown constitutive model was used to simulate the rock masses.Double-yield constitutive model,which was best fitted by Salamon's model,was used to simulate the gob.The results show that a‘‘/\shape"shear failure zone develops around the gob.The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line,and the number of yielded zones within the gob floor close to the gob edge is smaller.According to the research,the entry was determined to be driven under the gob edge employing splitlevel longwall panel layout(SLPL).The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress,and the area of intact rock mass at the elevating section is larger than conventional layout.Numerical modelling was then validated by field observation.
基金This study was funded by the National Natural Science Foundation for Young Scientists of China(No.51804209)National Natural Science Foundation of China-Shanxi Joint Fund for Coal-Based Low-Carbon Technology(No.U1710258)Applied Basic Research Programs,Science and Technology Foundation for Youths of Shanxi Province,China(No.201801D221363).
文摘With the depletion of easily minable coal seams,less favorable reserves under adverse conditions have to be mined out to meet the market demand.Due to some historical reasons,large amount of remnant coal was left unrecovered.One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine,Shanxi Province,China.The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between.The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC).The remnant coal pillar was induced to cave in as top coal in LTCC system.Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata.The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars.And the gob development(roof strata cave-in)is intermittent with the cave-in of these coal pillars and the sandstone dirt band.FLAC3D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels.The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found.It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.
基金supported by the Youth Funds of National Natural Science Foundation of China(No.52004173)the Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)+2 种基金the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(No.2020L0066)the China Postdoctoral Science Foundation(No.2022M712922)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Nos.2021SX-TD001 and 2022SXTD008).
文摘To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.The "backfilling body-immediate roof" cooperative bearing structure of CBCM is analyzed by establishing the model of the medium thick plate on an elastic foundation.The influence of the backfilling rate on the stability of overlying strata is analyzed by the numerical simulation experiment.The control effect of CBCM is verified by a physic similar simulation test.The economic benefit of CBCM is analyzed.The conclusions are:the deformation characteristics of the immediate roof and critical backfilling spacing in CBCM can be analyzed based on the Hu Haichang’s theory.Exerting the bearing capacity of the immediate roof is beneficial to the stability of the overlying strata.The CBCM has a good control effect on the overburden in Xinyang Mine when the backfilling rate is lower than 25%.The backfilling cost of per ton coal is 37.39 yuan/t when the backfilling rate is 13.7%,with a decrease rate of 56.63%than the full-filling.The research results can provide theoretical support for the application of CBCM in coal mining.
基金supported by the Natural Science Foundation of Shanghai(20ZR1419700 and 22ZR1481000)Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(HNTS2022011)。
文摘With the popularity of the internet,users hope to better protect their privacy while obtaining network services.However,in the traditional centralized authentication scheme,identity information such as the user's private key is generated,stored,and managed by the network operator.Users can't control their identity information,which will lead to a great threat to the privacy of users.Based on redactable blockchain,we propose a fine-grained and fair identity authentication scheme for mobile networks.In our proposed scheme,the user's identity information is generated and controlled by the users.We first propose a notion of score chameleon hash(SCH),which can delete or update the information of illegal users so as to dynamically update the status of users and provide users with more fine-grained and fair services.We propose another notion of self-updating secret sharing(SUSS),which allows users to update the trapdoor and the corresponding hash key after redacting the blockchain without requiring trusted authority to redistribute the trapdoor.Experimental results show that,compared with the immutable blockchain Bitcoin,the redactable blockchain in our identity authentication scheme provides users with fine-grained and fair redacting functions,and can be adopted with a small additional overhead.
基金supported by the Shanxi Province Colleges and Universities Science and Technology Achievement Transformation and Cultivation Project(2020CG008).
文摘A variety of dust control methods are often applied in coal mines,among which the application of wet scrubbers has proven to be an efficient technology for the removal of dust in airstreams,rather than diluting or confining the dust.In this paper,a wet scrubber design was developed.Based on a self-designed experimental test platform,the total dust concentration,respirable dust concentration,air volume,and average pressure drops of wet scrubbers with 12,16,20,and 24 blades were measured under different water intake conditions.The results show that the different water intake levels have only minimal effects on the air volume of the wet scrubbers.However,increased water intake had improved the dust removal efficiency of the wet scrubbers with the same number of blades.The wet scrubber with 16 blades was found to have the best dust removal efficiency at a water intake level of 1.35 m^(3)/h.Its total dust and respirable dust removal efficiency reached 96.81%and 95.59%,respectively.The air volume was 200.4 m^(3)/min,and the average pressure drop was determined to be 169.4 Pa.In addition,when the wet scrubber with 16 blades was applied in a coal preparation plant in China's Shanxi Province,it was observed that the total dust concentration had fallen below 8.1 mg/m^(3),and the respirable dust concentration had fallen below 5.9 mg/m^(3).Therefore,the results obtained in this research investigation provide important references for the use of wet scrubbers to improve coal production environmental conditions.
基金financially supported by the Distinguished Youth Funds of National Natural Science Foundation of China(No.51925402)the Ten Thousand Talent Program of China for Leading Scientists in Science,Technology and Innovation,the Shanxi Science and Technology Major Project Funds(No.20201102004)+3 种基金the Shanxi“1331 Project”Fundsthe Shanxi Province Key Laboratory Construction Project Fundsthe Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Nos.2021SX-TD001 and 2021SX-TD002)the Shanxi Province Postgraduate Education Innovation Project(No.2021Y191).
文摘The effect of calcination temperature on the pozzolanic activity of maize straw stem ash(MSSA)was evaluated.The MSSA samples calcined at temperature values of 500,700,and 850℃ were dissolved in portlandite solution for 6 h,thereby obtaining residual samples.The MSSA and MSSA residual samples were analyzed using Fourier transform infrared spectroscopy,X-ray powder diffraction scanning electron microscopy,and X-ray photoelectron spectroscopy to determine vibration bonds,minerals,microstructures,and Si 2p transformation behavior.The conductivity,pH value,and loss of conductivity with dissolving time of the MSSA-portlandite mixed solution were also determined.The main oxide composition of MSSA was silica and potassium oxide.The dissolution of the Si^(4+) content of MSSA at 500℃ was higher than those of the other calcination temperatures.The conductivity and loss of conductivity of MSSA at 700℃ were higher than those of the other calcination temperatures at a particular dissolving time due to the higher KCl content in MSSA at 700℃.C-S-H was easily identified in MSSA samples using X-ray powder diffraction,and small cubic and nearly spherical particles of C-S-H were found in the MSSA residual samples.In conclusion,the optimum calcination temperature of MSSA having the best pozzolanic activity is 500℃,but excessive agglomeration must be prevented.
基金supported by the National Natural Science Foundation of China under Grants 62072295,61525203,U1636206,U1936214Natural Science Foundation of Shanghai under Grant 19ZR1419000。
文摘Digital watermark embeds information bits into digital cover such as images and videos to prove the creator’s ownership of his work.In this paper,we propose a robust image watermark algorithm based on a generative adversarial network.This model includes two modules,generator and adversary.Generator is mainly used to generate images embedded with watermark,and decode the image damaged by noise to obtain the watermark.Adversary is used to discriminate whether the image is embedded with watermark and damage the image by noise.Based on the model Hidden(hiding data with deep networks),we add a high-pass filter in front of the discriminator,making the watermark tend to be embedded in the mid-frequency region of the image.Since the human visual system pays more attention to the central area of the image,we give a higher weight to the image center region,and a lower weight to the edge region when calculating the loss between cover and embedded image.The watermarked image obtained by this scheme has a better visual performance.Experimental results show that the proposed architecture is more robust against noise interference compared with the state-of-art schemes.
基金supported by the Joint Funds of National Natural Science Foundation of China and Shanxi Province(U1710258 and U1810120)Distinguished Youth Funds of National Natural Science Foundation of China(51925402)+3 种基金Ten Thousand Talent Program of China for Leading Scientists in Science,Technology and Innovation,Shanxi Science and Technology Major Project Funds(No.20201102004)Shanxi“1331 Project”Funds,Shanxi Province Key Laboratory Construction Project Funds(No.202104010910021)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD001,No.2021SX-TD002)National Natural Science Foundation of China(51804208).
文摘Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.
基金supported by the Shanxi Province Colleges and Universities Science and Technology Achievement Transformation and Cultivation Project(2020CG008).
文摘In the present study,a numerical simulation method was adopted in order to examine the characteristics of dust dispersion during continuous dust release periods(CRP)and stop dust release periods(SRP).The purpose was to analyze the dust distributions and migration actions around road-header drivers in excavation roadways,and then determine effective dust control measures for underground coal mines.This study’s simulation results showed that the dust concentrations continuously increased,and then gradually reached a stability level during the CRP.During that time,the locations of the drivers were always at the intersection of the original migration dust and the backflow dust,and the drivers were invaded by these two strands dust.However,during the SRP,the dust concentrations gradually decreased under the actions of the roadway ventilation.Besides,obvious backflow phenomena were observed around the road-header during the SRP.The locations of the drivers were still within the backflow paths of the high dust concentrations.At the present time,dust separation and extraction systems have been implemented in coal mines,including vacuuming and air knife devices,which are designed to control the dust around the road-header drivers.The field applications of these systems were conducted in the 26 mechanized excavation faces of the Zhangcun Coal Mine.The results revealed that the use of these dust removal systems could effectively reduce the dust concentrations around the road-header drivers.In the present study,the dust removal rates during the CRP and SRP were determined to reach up to 88.7% and 94.6%,respectively.Therefore,the results of this research study provided effective theoretical guidance of the characteristics of dust distributions in coal mines,and introduced effective control methods for the hazardous dust concentrations around road-header drivers during the excavation process.
基金Acknowledgements Our research was supported by the following projects: National Natural Science Foundation of China (Grants No. 61373151) National High-tech R&D Program of China (2013AA01A603)+2 种基金 National Science and Technology Support Projects of China (2012BAH07B01) Program of Science and Technology Commission of Shanghai Municipality (12510701900) 2012 loT Program of Ministry of Industry and Information Technology of China.
文摘A critical issue in image interpolation is preserving edge detail and texture information in images when zooming. In this paper, we propose a novel adaptive image zooming algorithm using weighted least-square estimation that can achieve arbitrary integer-ratio zoom (WLS-AIZ) For a given zooming ratio n, every pixel in a low-resolution (LR) image is associated with an n x n block of high-resolution (HR) pixels in the HR image. In WLS-AIZ, the LR image is interpolated using the bilinear method in advance. Model parameters of every n×n block are worked out through weighted least-square estimation. Subsequently, each pixel in the n × n block is substituted by a combination of its eight neighboring HR pixels using estimated parameters. Finally, a refinement strategy is adopted to obtain the ultimate HR pixel values. The proposed algorithm has significant adaptability to local image structure. Extensive experiments comparing WLS-AIZ with other state of the art image zooming methods demonstrate the superiority of WLS-AIZ. In terms of peak signal to noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM), WLS-AIZ produces better results than all other image integer-ratio zoom algorithms.