期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries 被引量:7
1
作者 Xinyang Li Yong Wang +9 位作者 Kai Xi Wei Yu Jie Feng guoxin gao Hu Wu Qiu Jiang Amr Abdelkader Weibo Hua Guiming Zhong Shujiang Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期401-414,共14页
The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quas... The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs.However,different ion transport capacity between solvent and polymer will cause local nonuniform Li+distribution,leading to severe dendrite growth.In addition,the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes.Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs.Here,a strategy by introducing ion-conducting arrays(ICA)is created by vertical-aligned montmorillonite into GPE.Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction,combined with computer simulations to visualize the transport process.Compared with conventional randomly dispersed fillers,ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures.Therefore,GPE/ICA exhibits high room-temperature ionic conductivity(1.08 mS cm^(−1))and long-term stable Li deposition/stripping cycles(>1000 h).As a final proof,Li||GPE/ICA||LiFePO_(4) cells exhibit excellent cycle performance at wide temperature range(from 0 to 60°C),which shows a promising path toward all-weather practical solid-state batteries. 展开更多
关键词 Solid-state batteries Composite electrolytes Vertical-aligned ion-conducting arrays Interfacial ion-conduction mechanism All-weather practical electrolyte design
下载PDF
Bacterial Cellulose Composite Solid Polymer Electrolyte With High Tensile Strength and Lithium Dendrite Inhibition for Long Life Battery 被引量:2
2
作者 Yuhan Li Zongjie Sun +9 位作者 Dongyu Liu Shiyao Lu Fei Li guoxin gao Min Zhu Mingtao Li Yanfeng Zhang Huaitian Bu Zhiyu Jia Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期434-443,共10页
The development of metallic lithium anode is restrained by lithium dendrite growth during cycling.The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit li... The development of metallic lithium anode is restrained by lithium dendrite growth during cycling.The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit lithium dendrite growth.To prepare the high-performance solid polymer electrolyte,the environment-friendly and cheap bacterial cellulose(BC)is used as filler incorporating with PEO-based electrolyte owing to good mechanical properties and Li salts compatibility.PEO/Li TFSI/BC composite solid polymer electrolytes(CSPE)are prepared easily by aqueous mixing in water.The lithium ion transference number of PEO/Li TFSI/BC CSPE is 0.57,which is higher than PEO/Li TFSI solid polymer electrolyte(SPE)(0.409).The PEO/Li TFSI/BC CSPE exhibits larger tensile strength(4.43 MPa)than PEO/Li TFSI SPE(1.34 MPa).The electrochemical window of composite electrolyte is widened 1.43 V by adding BC.Density functional theory calculations indicate that flex of PEO chains around Li atoms is suppressed,suggesting the enhanced lithium ion conductivity.Frontier molecular orbitals results suggest that an unfavorable intermolecular charge transfer lead to achieve higher potential for BC composite electrolyte.All solid-state Li metal battery with PEO/Li TFSI/BC CSPE delivers longer cycle life for 600 cycles than PEO/Li TFSI SPE battery(50 cycles).Li symmetrical battery using PEO/Li TFSI/BC CSPE could be stable for 1160 h. 展开更多
关键词 all solid-state battery bacterial cellulose composite polymer electrolyte DFT calculations HOMO and LUMO
下载PDF
Nonflammable PVDF-based gel polymer electrolytes modified by dimethyl methylphosphate for wide temperature range,long cycle-life and high-safety lithium metal batteries
3
作者 Yuanjun Zhao Xinyu Da +7 位作者 Yanyang Qin Xin Jia Xuetian Deng Shujiang Ding Junqiao Xiong Qiang Rong Xiangpeng Kong guoxin gao 《Science China Materials》 SCIE EI CAS 2024年第12期3994-4004,共11页
Gel polymer electrolytes(GPEs)has been considered as a promising candidate for the development of lithium metal batteries(LMBs)with high energy density and high safety,yet most reported GPEs is flammable,making the LM... Gel polymer electrolytes(GPEs)has been considered as a promising candidate for the development of lithium metal batteries(LMBs)with high energy density and high safety,yet most reported GPEs is flammable,making the LMBs still facing great safety hazards.Herein,we used dimethyl methylphosphate(DMMP)as the functional flame retardant and plasticizer for poly(vinylidene fluoride)(PVDF)matrix to develop a novel nonflammable PVDF-DMMP GPEs for LMBs.The DMMP not only highly enhances the flame resistance of PVDF-DMMP GPEs,the efficient dissociation of lithium salt and the rapid transport of lithium ions,but also helps to form stable and robust CEI/SEI layers.As a result,the ultrathin PVDF-DMMP GPEs(∼20µm)present superb flame resistance,high ionic conductivity(1.34×10^(−3) S cm^(−1) at 30℃),fast lithium ion transport(t_(Li^(+))=0.59at 30℃),high electrochemical stability voltage window(over 4 V)at 30–80℃ and uniform lithium deposition.When used in Li∥Li symmetric cells,Li∥LiFePO_(4)(LFP)and Li∥LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) full cells,the nonflammable PVDF-DMMP GPEs could endow these cells with long-term cycle stability,high rate capability,wide-temperature operation ranges(from−20 to 80℃)and high safety simultaneously.Even when suffering from harsh deconstructive tests,the Li∣PVDF-DMMP GPEs∣LFP pouch cells still work normally without any safety hazards.The actual energy density of the packed pouch cell is as high as 508 Wh kg^(−1).Therefore,our work can provide a promising strategy for the design of high safety and high-energy-density LMBs. 展开更多
关键词 lithium metal batteries gel polymer electrolyte flame resistance PVDF
原文传递
High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries 被引量:8
4
作者 Heng Mao Limin Liu +11 位作者 Lei Shi HuWu Jinxin Lang Ke Wang Tianxiang Zhu Yiyang gao Zehui Sun Jing Zhao guoxin gao Dongyang Zhang Wei Yan Shujiang Ding 《Science Bulletin》 SCIE EI CAS CSCD 2020年第10期803-811,M0003,共10页
Lithium-sulfur(Li-S) batteries have attracted considerable attention due to their high energy density(2600 Wh kg-1). However, its commercialization is hindered seriously by the low loading and utilization rate of sulf... Lithium-sulfur(Li-S) batteries have attracted considerable attention due to their high energy density(2600 Wh kg-1). However, its commercialization is hindered seriously by the low loading and utilization rate of sulfur cathodes. Herein, we designed the cellulose-based graphene carbon composite aerogel(CCA) self-standing electrode to enhance the performance of Li-S batteries. The CCA contributes to the mass loading and utilization efficiency of sulfur, because of its unique physical structure: low density(0.018 g cm-3), large specific surface area(657.85 m2 g-1), high porosity(96%), and remarkable electrolyte adsorption(42.25 times). Compared to Al(about 49%), the CCA displayed excellent sulfur use efficiency(86%) and could reach to high area capacity of 8.60 mAh cm-2 with 9.11 mgS loading. Meanwhile,the CCA exhibits the excellent potential for pulse sensing applications due to its flexibility and superior sensitivity to electrical response signals. 展开更多
关键词 Cellulose-based graphene aerogel Self-standing electrode High sulfur loading Lithium-sulfur battery Pulse sensing
原文传递
Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries 被引量:5
5
作者 Shiyao Lu Hu Wu +10 位作者 Jingwei Hou Limin Liu Jiao Li Chris J.Harris Cheng-Yen Lao Yuzheng Guo Kai Xi Shujiang Ding guoxin gao Anthony K.Cheetham R.Vasant Kumar 《Nano Research》 SCIE EI CAS CSCD 2020年第8期2289-2298,共10页
Nano Research volume 13,pages2289–2298(2020)Cite this article 347 Accesses 1 Altmetric Metrics details Abstract Sodium-ion batteries(SIBs)are promising power sources due to the low cost and abundance of battery-grade... Nano Research volume 13,pages2289–2298(2020)Cite this article 347 Accesses 1 Altmetric Metrics details Abstract Sodium-ion batteries(SIBs)are promising power sources due to the low cost and abundance of battery-grade sodium resources,while practical SIBs suffer from intrinsically sluggish diffusion kinetics and severe volume changes of electrode materials.Metal-organic framework(MOFs)derived carbonaceous metal compound offer promising applications in electrode materials due to their tailorable composition,nanostructure,chemical and physical properties.Here,we fabricated hierarchical MOF-derived carbonaceous nickel selenides with bi-phase composition for enhanced sodium storage capability.As MOF formation time increases,the pyrolyzed and selenized products gradually transform from a single-phase Ni3Se4 into bi-phase NiSex then single-phase NiSe2,with concomitant morphological evolution from solid spheres into hierarchical urchin-like yolk-shell structures.As SIBs anodes,bi-phase NiSex@C/CNT-10h(10 h of hydrothermal synthesis time)exhibits a high specific capacity of 387.1 mAh/g at 0.1 A/g,long cycling stability of 306.3 mAh/g at a moderately high current density of 1 A/g after 2,000 cycles.Computational simulation further proves the lattice mismatch at the phase boundary facilitates more interstitial space for sodium storage.Our understanding of the phase boundary engineering of transformed MOFs and their morphological evolution is conducive to fabricate novel composites/hybrids for applications in batteries,catalysis,sensors,and environmental remediation. 展开更多
关键词 metal organic frameworks phase boundary carbon nanotube metal selenides sodium ion batteries
原文传递
Ionic liquid assisted electrochemical coating zinc nanoparticles on carbon cloth as lithium dendrite suppressing host 被引量:5
6
作者 Yuhan Li Yuankun Wang +8 位作者 Yuchuan Shi Hu Wu Jiacheng Zeng Huaitian Bu Min Zhu Chunhui Xiao Yanfeng Zhang guoxin gao Shujiang Ding 《Science Bulletin》 SCIE EI CAS CSCD 2020年第13期1094-1102,M0004,共10页
The application of lithium metal anode with high specific capacity and energy density is limited by the volume expansion and pulverization caused by dendrite growth during cycle process.We propose a composite lithium ... The application of lithium metal anode with high specific capacity and energy density is limited by the volume expansion and pulverization caused by dendrite growth during cycle process.We propose a composite lithium anode by immersing molten lithium on the flexible three-dimensional(3D)carbon cloth scaffold with the zinc nanoparticles.The lithiophilic zinc nanoparticles layer of framework is synthesized by fast and easy electrochemical deposition from ionic liquid avoiding high temperature,high pressure and toxic reagent.The lithium is infused into the 3D lithiophilic framework,the composite anode is obtained.The steady network structure can confine the lithium and lead to Li dendrite restraining and reducing volume change due to the low interfacial resistance and reduce the effective current density,which induced the homogeneous Li growth.Benefiting from this,the Li infused 3D carbon cloth-Zn symmetric battery exhibits a low stripping/plating overpotential(~30 mV)and can be stable over 900 h at 1 mA cm-2.The Li//LiFePO4 battery delivers higher reversible capacity(140 mAh g^-1 at 2 C and 120 mAh g^-1 at 5 C)and stable cycling for 1500 and 2000 cycles than bare Li. 展开更多
关键词 3D carbon cloth Ionic liquid Li infusion Steady host Lithium metal battery
原文传递
Highly Stretchable and Transparent Ionic Conductor with Novel Hydrophobicity and Extreme-Temperature Tolerance 被引量:10
7
作者 Lei Shi Kun Jia +7 位作者 Yiyang gao Hua Yang Yaming Ma Shiyao Lu guoxin gao Huaitian Bu Tongqing Lu Shujiang Ding 《Research》 EI CAS 2020年第1期363-372,共10页
Highly stretchable and transparent ionic conducting materials have enabled new concepts of electronic devices denoted as iontronics,with a distinguishable working mechanism and performances from the conventional elect... Highly stretchable and transparent ionic conducting materials have enabled new concepts of electronic devices denoted as iontronics,with a distinguishable working mechanism and performances from the conventional electronics.However,the existing ionic conducting materials can hardly bear the humidity and temperature change of our daily life,which has greatly hindered the development and real-world application of iontronics.Herein,we design an ion gel possessing unique traits of hydrophobicity,humidity insensitivity,wide working temperature range(exceeding 100℃,and the range covered our daily life temperature),high conductivity(10^(-3)~10^(-5) S/cm),extensive stretchability,and high transparency,which is among the bestperforming ionic conductors ever developed for flexible iontronics.Several ion gel-based iontronics have been demonstrated,including large-deformation sensors,electroluminescent devices,and ionic cables,which can serve for a long time under harsh conditions.The designed material opens new potential for the real-world application progress of iontronics. 展开更多
关键词 HIGHLY humidity EXCEEDING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部