Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin s...Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin slits can be regarded as a new breed of optical elements for efficient focusing and guiding of intense laser pulse.The fundamental physics of intense laser interaction with thin slits is studied,and it is revealed that relativistic effects can lead to enhanced laser focusing far beyond the pure diffractive focusing regime.In addition,the interaction of an intense laser pulse with periodic thin slits makes it feasible to achieve multifold enhancement in both laser intensity and energy transfer efficiency compared with conventional waveguides.These results provide a novel method for manipulating ultra-intense laser pulses and should be of interest for many laser-based applications.展开更多
Branched flow is an interesting phenomenon that can occur in diverse systems.It is usually linear in the sense that the flow does not alter the properties of the medium.Branched flow of light on thin films has recentl...Branched flow is an interesting phenomenon that can occur in diverse systems.It is usually linear in the sense that the flow does not alter the properties of the medium.Branched flow of light on thin films has recently been discovered.It is therefore of interest to know whether nonlinear light branching can also occur.Here,using particle-in-cell simulations,we find that in the case of an intense laser propagating through a randomly uneven medium,cascading local photoionization by the incident laser,together with the response of freed electrons in the strong laser fields,triggers space–time-dependent optical unevenness.The resulting branching pattern depends dramatically on the laser intensity.That is,the branching here is distinct from the existing linear ones.The observed branching properties agree well with theoretical analyses based on the Helmholtz equation.Nonlinear branched propagation of intense lasers potentially opens up a new area for laser–matter interaction and may be relevant to other branching phenomena of a nonlinear nature.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFA1603300)the National Natural Science Foundation of China(Grant Nos.12175154,12205201,12005149,and 11975214)+1 种基金the Shenzhen Science and Technology Program(Grant No.RCYX20221008092851073)used under UK EPSRC Contract Nos.EP/G055165/1 and EP/G056803/1.
文摘Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin slits can be regarded as a new breed of optical elements for efficient focusing and guiding of intense laser pulse.The fundamental physics of intense laser interaction with thin slits is studied,and it is revealed that relativistic effects can lead to enhanced laser focusing far beyond the pure diffractive focusing regime.In addition,the interaction of an intense laser pulse with periodic thin slits makes it feasible to achieve multifold enhancement in both laser intensity and energy transfer efficiency compared with conventional waveguides.These results provide a novel method for manipulating ultra-intense laser pulses and should be of interest for many laser-based applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12205201,12175154,11875092,and 12005149)the Natural Science Foundation of Top Talent of SZTU(Grant Nos.2019010801001 and 2019020801001)+1 种基金GCS Jülich(Project No.QED20)in GermanyThe EPOCH code is used under a UK EPSRC contract(Grant Nos.EP/G055165/1 and EP/G056803/1).
文摘Branched flow is an interesting phenomenon that can occur in diverse systems.It is usually linear in the sense that the flow does not alter the properties of the medium.Branched flow of light on thin films has recently been discovered.It is therefore of interest to know whether nonlinear light branching can also occur.Here,using particle-in-cell simulations,we find that in the case of an intense laser propagating through a randomly uneven medium,cascading local photoionization by the incident laser,together with the response of freed electrons in the strong laser fields,triggers space–time-dependent optical unevenness.The resulting branching pattern depends dramatically on the laser intensity.That is,the branching here is distinct from the existing linear ones.The observed branching properties agree well with theoretical analyses based on the Helmholtz equation.Nonlinear branched propagation of intense lasers potentially opens up a new area for laser–matter interaction and may be relevant to other branching phenomena of a nonlinear nature.