Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the meta...Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carrier in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.展开更多
The recent progresses in the surfaee modification of ultra high molecular weight polyethylene (UHMWPE) using such advanced surface modification technologies as conventional ion implantation (CⅡ), new plasma immersion...The recent progresses in the surfaee modification of ultra high molecular weight polyethylene (UHMWPE) using such advanced surface modification technologies as conventional ion implantation (CⅡ), new plasma immersion ion implantation (PⅢ) and novel active screen plasma (ASP), were all reported. Significantly improved wear resistance was achieved, which has great potential for extending the life-span of joint replacement prostheses and enhancing the performance of such sports equipment as skis and snowboards.展开更多
The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eut...The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eutectic structure(PLES)is usually replaced by a coarse anomalous eutectic structure(AES)when the undercooling prior to solidification exceeds a certain value.The forming mechanism of AES in the undercooled eutectic Ag-Cu alloy has been a controversial issue.In this work,the undercooled Ag-39.9 at.% Cu eutectic alloy is solidified under different cooling conditions by using techniques of melt fluxing and copper mold casting.The results show that the coupled eutectic growth of this alloy undergoes a transition from a slow eutectic-cellular growth(ECG)to a rapid eutectic-dendritic growth(EDG)above a undercooling of 72 K,accompanying with an abrupt change of the distribution and amount of AES in as-solidified microstructures.Two kinds of primary lamellar eutectic structures are formed by ECG and EDG during recalescence,respectively.The destabilization of PLES that causes the formation of AES is ascribed to two different mechanisms based on the microstructural examination and theoretical calculations.Below 72 K,the destabilization of PLES formed by slow ECG is caused by the mechanism of"termination migration"driven by interfacial energy.While above 72 K,the destabilization of PLES formed by rapid EDG is attributed to the unstable perturbation of interface driven by interfacial energy and solute supersaturation.展开更多
Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated ...Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.展开更多
Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precurso...Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precursor alloys,and dealloying and heat treatment parameters.Both the ligament and pore sizes decrease with increasing the electrochemical potential upon dealloying and the concentration of noble component in the precursor alloys.Heat treatment causes coarsening of the nanoporous structure.Above a critical temperature,the nanoporous structures are subjected to significant coarsening.Below the critical temperature,surface diffusion is believed to dominate the coarsening process.Above the critical temperature,the nanoporous structure coarsens remarkably at a rather high rate,which is ascribed to a multiple-mechanism controlled process.展开更多
TiC_(x)is an excellent composite strengthening particle and grain refiner for Al alloys.However,the stability of TiC_(x)is poor when solute Si exists in Al alloy melts,which significantly depresses its strengthening a...TiC_(x)is an excellent composite strengthening particle and grain refiner for Al alloys.However,the stability of TiC_(x)is poor when solute Si exists in Al alloy melts,which significantly depresses its strengthening and grain refining effects.In this work,the destabilization mechanisms of the TiC_(x)particles in Al-Si alloy melt with a composition of Al-7Si-7.5TiC were explored via experiments,first-principles calculations and thermodynamic calculations.The experimental results show that Si atoms diffuse into TiC_(x)and Ti atoms are released into the Al melt to form a Ti-rich transition zone during the insulation of TiC_(x)in Al-Si melt,and the TiAlySiz and Al_(4)C_(3)phases are solidified in the Ti-rich zone and at Ti-rich zone/TiC_(x)interface,respectively.The first principles calculations show that the low formation energy of C vacancies facilitates the rapid diffusion of Si atoms in TiC_(x),while the doping of Si atoms reduces the energy barrier of diffusion of Ti atoms in TiC_(x)and promotes the formation of Ti-rich zones.The thermodynamic calculations show that the wide crystallization temperature range of the destabilized product TiAlySiz phase is the key to continuous decomposition of TiC_(x)particles.In addition,the driving force of the main destabilization reaction of TiC_(x)in the Al-Si alloys is about 44 times higher than that in the Al alloys without Si addition.This indicates that the presence of solute Si remarkably promotes the subsequent decomposition process of TiC_(x)in the Al-Si alloy melts.展开更多
A new near-infrared direct acceleration mechanism driven by Laguerre-Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum.Three-dimen...A new near-infrared direct acceleration mechanism driven by Laguerre-Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum.Three-dimensional simulations show that a 2-μm circularly polarized LG_(p)^(l)(p=0,l=1,σ_(2)=-1)laser can directly manipulate attosecond electron slices in additional dimensions(angular directions)and give them annular structures and angular momentums.These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators,edge-enhancement electron imaging,structured X-ray generation,and analysis and manipulation of nanomaterials.展开更多
文摘Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carrier in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.
文摘The recent progresses in the surfaee modification of ultra high molecular weight polyethylene (UHMWPE) using such advanced surface modification technologies as conventional ion implantation (CⅡ), new plasma immersion ion implantation (PⅢ) and novel active screen plasma (ASP), were all reported. Significantly improved wear resistance was achieved, which has great potential for extending the life-span of joint replacement prostheses and enhancing the performance of such sports equipment as skis and snowboards.
基金the National Natural Science Foundation of China(Nos.51771153,51371147,51790481 and 51431008)the Innovation Guidance Support Project for Taicang Top Research Institutes(No.TC2018DYDS20)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX201825)。
文摘The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eutectic structure(PLES)is usually replaced by a coarse anomalous eutectic structure(AES)when the undercooling prior to solidification exceeds a certain value.The forming mechanism of AES in the undercooled eutectic Ag-Cu alloy has been a controversial issue.In this work,the undercooled Ag-39.9 at.% Cu eutectic alloy is solidified under different cooling conditions by using techniques of melt fluxing and copper mold casting.The results show that the coupled eutectic growth of this alloy undergoes a transition from a slow eutectic-cellular growth(ECG)to a rapid eutectic-dendritic growth(EDG)above a undercooling of 72 K,accompanying with an abrupt change of the distribution and amount of AES in as-solidified microstructures.Two kinds of primary lamellar eutectic structures are formed by ECG and EDG during recalescence,respectively.The destabilization of PLES that causes the formation of AES is ascribed to two different mechanisms based on the microstructural examination and theoretical calculations.Below 72 K,the destabilization of PLES formed by slow ECG is caused by the mechanism of"termination migration"driven by interfacial energy.While above 72 K,the destabilization of PLES formed by rapid EDG is attributed to the unstable perturbation of interface driven by interfacial energy and solute supersaturation.
基金the National Key R&D Program of China (Project No. 2017YFB0703001)the National Natural Science Foundation of China (Nos. 51371147, 51101121, 51125002, 51134011, 51771153 and 51431008)+2 种基金the Research Fund of the State Key Lab. of Solidification Processing (NWPU) (No. 146-QZ2016)the Fundamental Research Funds for the Central Universities (No. 3102017jc03008)the Shaanxi Young Stars of Science and Technology (No. 2016KJXX-44) for financial supports
文摘Second-phase particle pinning has been well known as a mechanism impeding grain boundary (GB) migration, and thus, is documented as an efficient approach for stabilizing nanocrystalline (NC) materials at elevated temperatures. The pinning force exerted by interaction between small dispersed particles and GBs strongly depends on size and volume fraction of the particles. Since metallic oxides, e.g. Al2O3, exhibit great structural stability and high resistance against coarsening at high temperatures, they are expected as effective stabilizers for NC materials. In this work, NC composites consisting of NC Fe and Al2O3 nanoparticIes with different amounts and sizes were prepared by high energy ball milling and annealed at various temperatures (Tann) for different time periods (tann). Microstructures of the ball milled and annealed samples were examined by X-ray diffraction and transmission electron microscopy. The results show that the addition of Al2O3 nanoparticles not only enhances the thermal stability of NC Fe grains but also reduces their coarsening rate at elevated temperatures, and reducing the particle size and/or increasing its amount enhance the stabilizing effect of the Al2O3 particles on the NC Fe grains.
基金supported financially by the National Natural Science Foundation of China(Nos.51771153,51371147,51790481 and 51431008)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201825)。
文摘Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precursor alloys,and dealloying and heat treatment parameters.Both the ligament and pore sizes decrease with increasing the electrochemical potential upon dealloying and the concentration of noble component in the precursor alloys.Heat treatment causes coarsening of the nanoporous structure.Above a critical temperature,the nanoporous structures are subjected to significant coarsening.Below the critical temperature,surface diffusion is believed to dominate the coarsening process.Above the critical temperature,the nanoporous structure coarsens remarkably at a rather high rate,which is ascribed to a multiple-mechanism controlled process.
基金the financial supported from the Key R&D Program of Shaanxi Province,China(No.2020ZDLGY13-01)the innovation team program of material developing and application of key engine components(No.K20220185)the National Natural Science Foundation of China(Nos.52101049,52234009 and 52071262).
文摘TiC_(x)is an excellent composite strengthening particle and grain refiner for Al alloys.However,the stability of TiC_(x)is poor when solute Si exists in Al alloy melts,which significantly depresses its strengthening and grain refining effects.In this work,the destabilization mechanisms of the TiC_(x)particles in Al-Si alloy melt with a composition of Al-7Si-7.5TiC were explored via experiments,first-principles calculations and thermodynamic calculations.The experimental results show that Si atoms diffuse into TiC_(x)and Ti atoms are released into the Al melt to form a Ti-rich transition zone during the insulation of TiC_(x)in Al-Si melt,and the TiAlySiz and Al_(4)C_(3)phases are solidified in the Ti-rich zone and at Ti-rich zone/TiC_(x)interface,respectively.The first principles calculations show that the low formation energy of C vacancies facilitates the rapid diffusion of Si atoms in TiC_(x),while the doping of Si atoms reduces the energy barrier of diffusion of Ti atoms in TiC_(x)and promotes the formation of Ti-rich zones.The thermodynamic calculations show that the wide crystallization temperature range of the destabilized product TiAlySiz phase is the key to continuous decomposition of TiC_(x)particles.In addition,the driving force of the main destabilization reaction of TiC_(x)in the Al-Si alloys is about 44 times higher than that in the Al alloys without Si addition.This indicates that the presence of solute Si remarkably promotes the subsequent decomposition process of TiC_(x)in the Al-Si alloy melts.
基金supported by the National Natural Science Foundation of China(grant number 12075306)Strategic Priority Research Program of the Chinese Academy of Sciences(grant number XDB16010600)+4 种基金Key Research Programs in Frontier Science(grant number ZDBSLY-SLH006)Shanghai special science and technology innovation supported project(grant number 2019-jmrh1-kj1)Advanced research using high-intensity laser-produced photons and particles(ADONISgrant number CZ.02.1.01/0.0/0.0/16019/0000789)and High Field Initiative(HiFI,grant number CZ.02.1.01/0.0/0.0/15003/0000449)financial support of the Ministry of Education,Youth and Sports as part of targeted support from the National Programme of Sustainability Ⅱ。
文摘A new near-infrared direct acceleration mechanism driven by Laguerre-Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum.Three-dimensional simulations show that a 2-μm circularly polarized LG_(p)^(l)(p=0,l=1,σ_(2)=-1)laser can directly manipulate attosecond electron slices in additional dimensions(angular directions)and give them annular structures and angular momentums.These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators,edge-enhancement electron imaging,structured X-ray generation,and analysis and manipulation of nanomaterials.