期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructure and Mechanical Properties of X80 Pipeline Steel Joints by Friction Stir Welding Under Various Cooling Conditions 被引量:8
1
作者 G.M.Xie R.H.Duan +3 位作者 P.Xue Z.Y.Ma h.l.liu Z.A.Luo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第1期88-102,共15页
X80 pipeline steel plates were friction stir welded(FSW)under air,water,liquid CO2+water,and liquid CO2 cooling conditions,producing defect-free welds.The microstructural evolution and mechanical properties of these F... X80 pipeline steel plates were friction stir welded(FSW)under air,water,liquid CO2+water,and liquid CO2 cooling conditions,producing defect-free welds.The microstructural evolution and mechanical properties of these FSW joints were studied.Coarse granular bainite was observed in the nugget zone(NZ)under air cooling,and lath bainite and lath martensite increased signifi cantly as the cooling medium temperature reduced.In particular,under the liquid CO2 cooling condition,a dual phase structure of lath martensite and fi ne ferrite appeared in the NZ.Compared to the case under air cooling,a strong shear texture was identifi ed in the NZs under other rapid cooling conditions,because the partial deformation at elevated temperature was retained through higher cooling rates.Under liquid CO2 cooling,the highest transverse tensile strength and elongation of the joint reached 92%and 82%of those of the basal metal(BM),respectively,due to the weak tempering softening.A maximum impact energy of up to 93%of that of the BM was obtained in the NZ under liquid CO2 cooling,which was attributed to the operation of the dual phase of lath martensite and fi ne ferrite. 展开更多
关键词 FRICTION STIR welding PIPELINE steel Microstructure Mechanical properties COOLING
原文传递
Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling 被引量:22
2
作者 W.G.Zhang H.R.Li +3 位作者 C.Z.Wu Y.Q.Li Z.Q.Liu h.l.liu 《Underground Space》 SCIE EI 2021年第4期353-363,共11页
Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface ... Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface settlement caused by EPB tunneling were established based on extreme gradient boosting(XGBoost),artificial neural network,support vector machine,and multivariate adaptive regression spline.Datasets from three tunnel construction projects in Singapore were used,with main input parameters of cover depth,advance rate,earth pressure,mean standard penetration test(SPT)value above crown level,mean tunnel SPT value,mean moisture content,mean soil elastic modulus,and grout pressure.The performances of these soft computing models were evaluated by comparing predicted deformation with measured values.Results demonstrate the acceptable accuracy of the model in predicting ground settlement,while XGBoost demonstrates a slightly higher accuracy.In addition,the ensemble method of XGBoost is more computationally efficient and can be used as a reliable alternative in solving multivariate nonlinear geo-engineering problems. 展开更多
关键词 EPB Surface settlement Soft computing XGBoost Multivariate adaptive regression spline
原文传递
Evidence for the decays of ∧_c^+→∑^+η and ∑^+η’
3
作者 M.Ablikim F.F.An +322 位作者 Q.An Y.Bai Y.Ban H.Cai X.Cai G.F.Cao J.F.Chang G.Chen H.S.Chen J.C.Chen M.L.Chen P.L.Chen S.J.Chen Y.B.Chen W.Cheng H.LDai J.P.Dai Z.Y.Deng Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du P.F.Duan J.Z.Fan J.Fang S.S.Fang Y.Fang C.Q.Feng C.D.Fu Y.Fu Q.Gao X.L.Gao Y.Gao Y.G.Gao Z.Gao L.Gong W.X.Gong L.M.Gu M.H.Gu Y.T.Gu A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo S.Han X.Q.Hao K.L.He Y.K.Heng Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang Q.Ji Q.P.Ji X.B.Ji X.L.Ji X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin X.S.Kang B.C.Ke C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li Lei Li P.L.Li P.R.Li Q.Y.Li T.Li W.D.Li W.G.Li X.L.Li X.N. Li X.Q.Li Z.B.Li H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao C.X.Lin D.X.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu h.l.liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu Q.Liu S.B.Liu X.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma Y.J.Mao Z.P.Mao Z.X.Meng J.Min T.J.Min X.H.Mo Y.J.Mo Z.Ning S.L.Niu S.L.Olsen Q.Ouyang Y.Pan H.P.Peng J.L.Ping R.G.Ping H.R.Qi M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin Z.H.Qin J.F.Qiu S.Q.Qu G.Rong W.Shan X.Y.Shan M.Shao C.P. Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi J.J.Song X.Y.Song G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T.Tan C.J.Tang G.Y.Tang X.Tang B.Wang B.L.Wang C.W.Wang D.Y.Wang Dan Wang K.Wang L.L.Wang L.S.Wang M.Wang Meng Wang P.Wang P.L.Wang W.P.Wang X.F.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang D.H.Wei S.P.Wen L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia D.Xiao Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie X.A.Xiong Q.L.Xiu G.F.Xu J.J.Xu L.Xu Q.J.Xu Q.N.Xu X.P.Xu F.Yan L.Yan w.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan Y.Yuan Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong L.Zhou Q.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.Zhu S.H.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S. Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2019年第8期15-23,共9页
We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.... We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.We find evidence for the decays ∧c+→∑+η and ∑+η’ with statistical significance of 2.5σ and 3.2σ,respectively.Normalizing to the reference decays ∧c+→∑+π0 and ∑+ω,we obtain the ratios of the branching fractions■and ■to be 0.35±0.16±0.02 and 0.86±0.34±0.04,respectively.The upper limits at the 90% confidence level are set to be■and■.Using BESIII measurements of the branching fractions of the reference decays,we determine B(∧c+→∑+η)=(0.41±0.19±0.05)%(<0.68%)and B(∧c+→∑+η’)=(1.34±0.53 ±0.19)%(<1.9%).Here,the first uncertainties are statistical and the second systematic.The obtained branching fraction of ∧c+→∑+η is consistent with the previous measurement,and the branching fraction of ∧c+→∑+η’ is measured for the first time. 展开更多
关键词 charmed BARYON ∧c^+ DECAYS branching FRACTIONS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部