The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/...The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/SiO2/Si substrate and Pt plate substrate by simple thermal chemical vapor deposition (STCVD) technique and the electrical measurements of individual MWCNT grown on silicon substrate and Pt plate substrate were performed by home-made 'nano-manipulator', respectively. According to current-voltage curves obtained in the experiments the current density that the MWCNTs can carry is calculated to be about 107 A/cm2, which is much larger than that of normal metals.展开更多
基金Project(KM200510772013) supported by the Science and Technology Development Program of Education Committee of Beijing City Project (2005 - 2007) supported by the Academic Innovative Team Program (Novel Sensor and Materials: Nanodevice and Nanomaterials) of Education Committee of Beijing City
文摘The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/SiO2/Si substrate and Pt plate substrate by simple thermal chemical vapor deposition (STCVD) technique and the electrical measurements of individual MWCNT grown on silicon substrate and Pt plate substrate were performed by home-made 'nano-manipulator', respectively. According to current-voltage curves obtained in the experiments the current density that the MWCNTs can carry is calculated to be about 107 A/cm2, which is much larger than that of normal metals.