采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial le...采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立掺假样品的定量预测模型。为了减少高维共线性问题,提高模型运算效率,分别采用PLS-β系数法、逐步回归法(Stepwise)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长建立优化预测模型。结果表明,基于SPA算法结合MLR建模方法得到的掺假牛肉预测模型,其预测效果最优,校正集决定系数(R2C)和均方根误差(Root mean square error of calibration,RMSEC)分别为0.99和3.23%,验证集的决定系数(R2P)和均方根误差(Root mean square error of prediction)RMSEP分别为0.97和5.31%,预测偏差(Residual predictive deviation,RPD)为6.82。综上,近红外高光谱成像技术结合线性回归算法可以实现对掺假牛肉的快速无损定量检测。展开更多
采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探...采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探究光谱信息与不同掺假比例卡拉胶之间的定量关系。结果表明全波段光谱(900~1700 nm)所构建的PLS校正集模型均方根误差(Root mean square error,RMSE)为1.74%,预测模型RMSE为3.16%。表明基于全波段所建立的PLS模型具有较优的预测性能。利用连续投影算法(Successive projection algorithm,SPA)筛选获得11个特征波长,并优化全波长PLS模型,将预测集样品带入,以验证模型的预测效果,结果表明SPA算法结合PLS建模方法所建立的模型预测效果更优,预测集相关系数(RP)为0.93,均方根误差(Root mean square error of prediction,RMSEP)为3.51%,预测偏差(Residual predictive deviation,RPD)为2.66。试验表明利用高光谱成像技术可实现对注胶猪肉的快速无损检测。展开更多
基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量...基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。展开更多
利用900~1700nm近红外高光谱成像系统联用Stepwise算法快速评估鸡肉色泽和嫩度。通过采集新鲜屠宰鸡肉高光谱图像,提取试验样本感兴趣区域(Region of interests,ROI)反射光谱信息,经中值滤波平滑(Median filtering smoothing,MFS)、多...利用900~1700nm近红外高光谱成像系统联用Stepwise算法快速评估鸡肉色泽和嫩度。通过采集新鲜屠宰鸡肉高光谱图像,提取试验样本感兴趣区域(Region of interests,ROI)反射光谱信息,经中值滤波平滑(Median filtering smoothing,MFS)、多元散射校正(Multiplicative scatter correction,MSC)和标准正态变量变换( Standard normal variable correction,SNV)三种预处理后,分别利用偏最小二乘(Partial Least Squares,PLS)和多元线性回归(Multiple linear regression,MLR)挖掘光谱信息与鸡肉色泽参数(L^*、a^*、b^*)及嫩度参考值之间的定量关系。结果显示,经MFS预处理的近红外光谱(486个波长)构建的全波段PLS回归模型(F-PLS)预测L^*(RP=0.904,RMSEP=2.036)、b^*(RP=0.908,RMSEP=1.577)和嫩度(RP=0.948,RMSEP=1.596)效果更好。为提高预测效率,采用Stepwise算法筛选最优波长优化F-PLS模型,结果显示,从SNV预处理光谱筛选的14个最优波长构建MLR回归模型预测L^*值(RP=0.894,RMSEP=2.160)效果较优,从SNV预处理光谱筛选的13最优波长构建的O-PLS回归模型预测b^*值(RP=0.877,RMSEP=1.811)效果较优,从MFS预处理光谱筛选的20个最优波长构建O-PLS回归模型预测嫩度值(RP=0.888,RMSEP=2.408N)效果较优。本试验表明,利用近红外高光谱成像技术结合Stepwise算法可实现鸡肉色泽参数L^*、b^*值以及嫩度的快速评估。展开更多
文摘采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立掺假样品的定量预测模型。为了减少高维共线性问题,提高模型运算效率,分别采用PLS-β系数法、逐步回归法(Stepwise)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长建立优化预测模型。结果表明,基于SPA算法结合MLR建模方法得到的掺假牛肉预测模型,其预测效果最优,校正集决定系数(R2C)和均方根误差(Root mean square error of calibration,RMSEC)分别为0.99和3.23%,验证集的决定系数(R2P)和均方根误差(Root mean square error of prediction)RMSEP分别为0.97和5.31%,预测偏差(Residual predictive deviation,RPD)为6.82。综上,近红外高光谱成像技术结合线性回归算法可以实现对掺假牛肉的快速无损定量检测。
文摘采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探究光谱信息与不同掺假比例卡拉胶之间的定量关系。结果表明全波段光谱(900~1700 nm)所构建的PLS校正集模型均方根误差(Root mean square error,RMSE)为1.74%,预测模型RMSE为3.16%。表明基于全波段所建立的PLS模型具有较优的预测性能。利用连续投影算法(Successive projection algorithm,SPA)筛选获得11个特征波长,并优化全波长PLS模型,将预测集样品带入,以验证模型的预测效果,结果表明SPA算法结合PLS建模方法所建立的模型预测效果更优,预测集相关系数(RP)为0.93,均方根误差(Root mean square error of prediction,RMSEP)为3.51%,预测偏差(Residual predictive deviation,RPD)为2.66。试验表明利用高光谱成像技术可实现对注胶猪肉的快速无损检测。
文摘以整块鸡胸肉为研究对象,利用在线近红外光谱系统采集其900~1650 nm波长范围内的光谱信息,探究光谱信息与细菌菌落总数(Total Viable Count,TVC)之间的定量关系。对采集的原始光谱信息进行高斯滤波平滑(Gaussian Filter Smoothing,GFS)等五种预处理后,建立全波段偏最小二乘(Partial Least Squares,PLS)回归模型。采用回归系数法(Regression Coefficient,RC)和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长,构建优化的PLS模型和多元线性回归(Multiple Linear Regression,MLR)模型。结果表明,基于全波段GFS光谱构建的GFS-PLS模型预测鸡胸肉TVC效果最佳(rP=0.964,RMSEP=0.806 lg CFU/g)。基于SPA法从GFS光谱中筛选出的25个最优波长(907.0、913.7、923.8、927.2、937.2、947.3、974.0、987.3、997.3、1007.3、1040.4、1080.1、1099.9、1132.9、1155.9、1185.5、1215.0、1241.2、1270.6、1358.2、1380.8、1403.3、1419.3、1578.9和1615.2 nm),建立的SPA-GFS-MLR模型预测性能(rP=0.944,RMSEP=1.022 lg CFU/g)最接近GFS-PLS模型。基于在线近红外光谱系统可实现对大批量整块鸡胸肉细菌总数含量的快速无接触检测。
文摘基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。
文摘采用近红外高光谱成像技术(900~1700 nm)结合化学计量学算法快速定量预测牛肉糜中大豆分离蛋白掺入量。首先按照2%~30%(w/w),掺入间隔1%的浓度梯度,制备不同大豆分离蛋白掺入浓度的牛肉糜样品,然后采集样品的高光谱图像并提取光谱数据,最后运用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立预测模型。为了减少模型的高维共线性问题,采用回归系数法(Regression coefficients,RC)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长,优化全波段预测模型。结果显示基于RC法筛选的22个最优波长构建的RC-PLSR模型和RC-MLR模型预测效果优于基于SPA法筛选的21个最优波长构建的SPA-PLSR模型和SPA-MLR模型。其中,RC-PLSR模型预测效果最接近全波段PLSR模型,rP为0.95,RMSEP为2.73%,RPD为3.32。试验结果表明近红外高光谱成像技术结合化学计量学方法可快速预测牛肉糜中大豆分离蛋白的掺入量。
文摘本文旨在挖掘900~1700 nm波长范围内的高光谱信息构建生鲜鸡肉离心损失率的快速预测模型。通过采集生鲜鸡肉样品的高光谱图像,并提取图像感兴趣区域的光谱信息,经基线校正(Baseline Correction,BC)、高斯滤波平滑(Gaussian Filter Smoothing,GFS)、多元散射校正(Multiplicative Scatter Correction,MSC)、移动平均值平滑(Moving Average Smoothing,MAS)、中值滤波平滑(Median Filtering Smoothing,MFS)5种光谱预处理后,建立全波段偏最小二乘(Partial Least Squares,PLS)回归模型,并利用回归系数法(Regression Coefficient,RC)、连续投影算法(Successive Projections Algorithm,SPA)和逐步回归法(Stepwise)筛选特征波长,优化全波段模型。结果显示,基于Stepwise法从原始光谱中筛选的16个最优波长(900.6、915.4、1024.0、1089.8、1111.2、1155.6、1165.5、1288.9、1305.4、1433.9、1442.1、1486.7、1493.3、1541.1、1690.1和1693.4 nm)构建的PLS模型预测效果较好,其中,rC为0.94,RMSEC(Root Mean Square Error of Calibration)为1.43%,rP为0.94,RMSEP(Root Mean Square Error of Prediction)为1.60%。本文表明,基于高光谱信息构建的PLS模型可快速预测生鲜鸡肉离心损失率。
文摘利用900~1700nm近红外高光谱成像系统联用Stepwise算法快速评估鸡肉色泽和嫩度。通过采集新鲜屠宰鸡肉高光谱图像,提取试验样本感兴趣区域(Region of interests,ROI)反射光谱信息,经中值滤波平滑(Median filtering smoothing,MFS)、多元散射校正(Multiplicative scatter correction,MSC)和标准正态变量变换( Standard normal variable correction,SNV)三种预处理后,分别利用偏最小二乘(Partial Least Squares,PLS)和多元线性回归(Multiple linear regression,MLR)挖掘光谱信息与鸡肉色泽参数(L^*、a^*、b^*)及嫩度参考值之间的定量关系。结果显示,经MFS预处理的近红外光谱(486个波长)构建的全波段PLS回归模型(F-PLS)预测L^*(RP=0.904,RMSEP=2.036)、b^*(RP=0.908,RMSEP=1.577)和嫩度(RP=0.948,RMSEP=1.596)效果更好。为提高预测效率,采用Stepwise算法筛选最优波长优化F-PLS模型,结果显示,从SNV预处理光谱筛选的14个最优波长构建MLR回归模型预测L^*值(RP=0.894,RMSEP=2.160)效果较优,从SNV预处理光谱筛选的13最优波长构建的O-PLS回归模型预测b^*值(RP=0.877,RMSEP=1.811)效果较优,从MFS预处理光谱筛选的20个最优波长构建O-PLS回归模型预测嫩度值(RP=0.888,RMSEP=2.408N)效果较优。本试验表明,利用近红外高光谱成像技术结合Stepwise算法可实现鸡肉色泽参数L^*、b^*值以及嫩度的快速评估。