Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing...Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.展开更多
Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD...Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.展开更多
基金the Nationnal Natural Science Foundation of China (No. 50342016).
文摘Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.
基金supported by the Natural Science Foundation of Hebei Province (No. E2011205083)the Key Item Science Foundation of Hebei Province, China (No.10965125D+3 种基金 No.08965108D)the National Natural Science Foundation of China (No.NSF-10774037No.10074013)the National High Technology Research and Development Program of China (No. 2007AA03Z100)
文摘Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.