为探讨拟微绿球藻(Nannochloropsis sp.)粉替代鱼粉对大菱鲆(Scophthalmus maximus L.)幼鱼生长性能、体组成和血清生化指标的影响,用拟微绿球藻粉替代基础饲料中0%、3.88%、7.76%、11.64%和15.52%的鱼粉,配制成5种等氮等能的饲料(N0、N...为探讨拟微绿球藻(Nannochloropsis sp.)粉替代鱼粉对大菱鲆(Scophthalmus maximus L.)幼鱼生长性能、体组成和血清生化指标的影响,用拟微绿球藻粉替代基础饲料中0%、3.88%、7.76%、11.64%和15.52%的鱼粉,配制成5种等氮等能的饲料(N0、N3.88、N7.76、N11.64、N15.52)。选取初始体重为(24.60±0.02) g的大菱鲆幼鱼600尾,随机分成5组,每组3个重复,每个重复40尾鱼,养殖周期70d。结果显示:1)各实验组大菱鲆幼鱼的增重率(WGR)、特定生长率(SGR)、蛋白质效率(PER)、饲料系数(FCR)、日摄食率(DFI)、肥满度(CF)和成活率(SR)均无显著差异(P>0.05);2)随着藻粉添加量的增加,全鱼及肌肉中粗脂肪含量显著降低(P<0.05),粗蛋白、粗灰分和水分含量无显著差异(P>0.05);3)血清溶菌酶(LZM)、补体蛋白C3、补体蛋白C4及酸性磷酸酶(ACP)活力均呈先上升后下降的趋势,分别在N7.76、N7.76、N11.64、N7.76组达到最大值,且显著高于N0组(P<0.05),N15.52组碱性磷酸酶(ALP)显著低于其他组(P<0.05),其他组之间无显著差异(P>0.05);4)藻粉组血清总超氧化物歧化酶(T-SOD)、总抗氧化能力(T-AOC)和谷胱甘肽过氧化物酶(GSH-PX)活力,均呈先上升后下降的趋势,在N7.76组达到最大值,且显著高于N0组(P<0.05);5) N7.76组血清甘油三酯(TG)含量显著低于其他组(P<0.05),其他组之间无显著差异(P>0.05),藻粉组血清总胆固醇(TCHO)显著低于N0组(P<0.05),各藻粉组之间差异不显著(P>0.05);6)藻粉组血清谷草转氨酶(AST)活力呈先下降后上升的趋势,N11.64组达到最小值,显著低于N0组(P<0.05),藻粉组谷丙转氨酶(ALT)活力显著低于N0组(P<0.05)。研究表明,本实验条件下,拟微绿球藻粉替代大菱鲆幼鱼饲料中15.52%的鱼粉对其生长无显著影响,替代7.76%可显著提高其非特异性免疫力,降低血脂水平。展开更多
A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin...A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH4^+-N), turbidity and anionic surfactants (LAS) was investigated under different conditions. It was observed that the effluent COD, NH4^+-N, turbidity and LAS flocculated in ranges of 0.19-0.85 mg/L, 0.03-0.18 mg/L, 0.0-0.15 NTU and 0.0-0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L, 79.5-129.3 mg/L, 110-181.1NTU and 4.9-5.4 mg/L. The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH4^+-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH4^+-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH4^+-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.展开更多
基金This work was supported by the Heilongjiang Natural Science Foundation(No.E2007-04)the National Natural Science Foundation of China(No.50908062)the State Key Laboratory of Urban Water Resource and Environment(No.HIT-QAK200808).
文摘A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH4^+-N), turbidity and anionic surfactants (LAS) was investigated under different conditions. It was observed that the effluent COD, NH4^+-N, turbidity and LAS flocculated in ranges of 0.19-0.85 mg/L, 0.03-0.18 mg/L, 0.0-0.15 NTU and 0.0-0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L, 79.5-129.3 mg/L, 110-181.1NTU and 4.9-5.4 mg/L. The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH4^+-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH4^+-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH4^+-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.