Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloo...Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloor topographic highs. Many gas hydrate exploration examples abroad also indicate that the saturation of gas hydrates was higher at seafloor topographic highs. This work aims to understand why gas hydrates accumulated at topographic highs and why their saturation is higher.展开更多
To revise P-wave velocity and thickness of the hydrate layer in the Shenhu area of the South China Sea, acoustic and resistivity logging curves are reanalyzed. The waterlogging phenomenon is found in the shallow sedim...To revise P-wave velocity and thickness of the hydrate layer in the Shenhu area of the South China Sea, acoustic and resistivity logging curves are reanalyzed. The waterlogging phenomenon is found in the shallow sediments of five drilling wells, which causes P-wave velocity to approximate the propagation velocity of sea water(about 1500 m s-1). This also affects the identification of the hydrate layer and results in the underestimate of its thickness. In addition, because there could be about a 5 m thick velocity ramp above or below the hydrate layer as interpreted by acoustic and resistivity logging curves, the recalibrated thickness of this layer is less than the original estimated thickness. The recalibrated P-wave velocity of the hydrate layer is also higher than the original estimated velocity. For the drilling well with a relatively thin hydrate layer, the velocity ramp plays a more important role in identifying and determining the thickness of the layer.展开更多
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d...The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.展开更多
Based on the geochemical parameters and analytical data,the heat conservation equation,mass balance law,Rayleigh fractionation model and other methods were used to quantify the in-situ yield and external flux of crust...Based on the geochemical parameters and analytical data,the heat conservation equation,mass balance law,Rayleigh fractionation model and other methods were used to quantify the in-situ yield and external flux of crust-derived helium,and the initial He concentration and thermal driving mechanism of mantle-derived helium,in the Ledong Diapir area,the Yinggehai Basin,in order to understand the genetic source,migration and accumulation mechanisms of helium under deep thermal fluid activities.The average content of mantle-derived He is only 0.0014%,the ^(3)He/^(4)He value is(0.002–2.190)×10^(−6),and the R/Ra value ranges from 0.01 to 1.52,indicating the contribution of mantle-derived He is 0.09%–19.84%,while the proportion of crust-derived helium can reach over 80%.Quantitative analysis indicates that the crust-derived helium is dominated by external input,followed by in-situ production,in the Ledong diapir area.The crust-derived helium exhibits an in-situ 4 He yield rate of(7.66–7.95)×10^(−13)cm^(3)/(a·g),an in-situ 4 He yield of(4.10–4.25)×10^(−4)cm^(3)/g,and an external 4 He influx of(5.84–9.06)×10^(−2)cm^(3)/g.These results may be related to atmospheric recharge into formation fluid and deep rock-water interactions.The ratio of initial mole volume of 3 He to enthalpy(W)is(0.004–0.018)×10^(−11) cm^(3)/J,and the heat contribution from the deep mantle(X_(M))accounts for 7.63%–36.18%,indicating that deep hot fluid activities drive the migration of mantle-derived 3 He.The primary helium migration depends on advection,while the secondary migration is controlled by hydrothermal degassing and gas-liquid separation.From deep to shallow layers,the CO_(2/3) He value rises from 1.34×10^(9)to 486×10^(9),indicating large amount of CO_(2)has escaped.Under the influence of deep thermal fluid,helium migration and accumulation mechanisms include:deep heat driven diffusion,advection release,vertical hydrothermal degassing,shallow lateral migration,accumulation in traps far from faults,partial pressure balance and sealing capability.展开更多
It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because o...It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.展开更多
基金funded by the National Natural Science Foundation of China(grants No.41406080,41273066 and 41106060)
文摘Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloor topographic highs. Many gas hydrate exploration examples abroad also indicate that the saturation of gas hydrates was higher at seafloor topographic highs. This work aims to understand why gas hydrates accumulated at topographic highs and why their saturation is higher.
基金supported by the National Natural Science Foundation of China (Nos. 41273066 and MRE200805)
文摘To revise P-wave velocity and thickness of the hydrate layer in the Shenhu area of the South China Sea, acoustic and resistivity logging curves are reanalyzed. The waterlogging phenomenon is found in the shallow sediments of five drilling wells, which causes P-wave velocity to approximate the propagation velocity of sea water(about 1500 m s-1). This also affects the identification of the hydrate layer and results in the underestimate of its thickness. In addition, because there could be about a 5 m thick velocity ramp above or below the hydrate layer as interpreted by acoustic and resistivity logging curves, the recalibrated thickness of this layer is less than the original estimated thickness. The recalibrated P-wave velocity of the hydrate layer is also higher than the original estimated velocity. For the drilling well with a relatively thin hydrate layer, the velocity ramp plays a more important role in identifying and determining the thickness of the layer.
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42076217,41976074)+1 种基金the Laoshan Laboratory(No.LSKJ202203506)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202).
文摘The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.
基金Supported by the National Natural Science Foundation of China(41821002,42272163,42072167)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202203403)Hainan Branch Project of CNOOC(KJZH-2021-0003-00).
文摘Based on the geochemical parameters and analytical data,the heat conservation equation,mass balance law,Rayleigh fractionation model and other methods were used to quantify the in-situ yield and external flux of crust-derived helium,and the initial He concentration and thermal driving mechanism of mantle-derived helium,in the Ledong Diapir area,the Yinggehai Basin,in order to understand the genetic source,migration and accumulation mechanisms of helium under deep thermal fluid activities.The average content of mantle-derived He is only 0.0014%,the ^(3)He/^(4)He value is(0.002–2.190)×10^(−6),and the R/Ra value ranges from 0.01 to 1.52,indicating the contribution of mantle-derived He is 0.09%–19.84%,while the proportion of crust-derived helium can reach over 80%.Quantitative analysis indicates that the crust-derived helium is dominated by external input,followed by in-situ production,in the Ledong diapir area.The crust-derived helium exhibits an in-situ 4 He yield rate of(7.66–7.95)×10^(−13)cm^(3)/(a·g),an in-situ 4 He yield of(4.10–4.25)×10^(−4)cm^(3)/g,and an external 4 He influx of(5.84–9.06)×10^(−2)cm^(3)/g.These results may be related to atmospheric recharge into formation fluid and deep rock-water interactions.The ratio of initial mole volume of 3 He to enthalpy(W)is(0.004–0.018)×10^(−11) cm^(3)/J,and the heat contribution from the deep mantle(X_(M))accounts for 7.63%–36.18%,indicating that deep hot fluid activities drive the migration of mantle-derived 3 He.The primary helium migration depends on advection,while the secondary migration is controlled by hydrothermal degassing and gas-liquid separation.From deep to shallow layers,the CO_(2/3) He value rises from 1.34×10^(9)to 486×10^(9),indicating large amount of CO_(2)has escaped.Under the influence of deep thermal fluid,helium migration and accumulation mechanisms include:deep heat driven diffusion,advection release,vertical hydrothermal degassing,shallow lateral migration,accumulation in traps far from faults,partial pressure balance and sealing capability.
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR202011030013)the National Natural Science Foundation of China(No.41976205)+1 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020002)the China Geological Survey Program(No.DD20221704).
文摘It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.