Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in ...Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.展开更多
Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discr...Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discriminatory power of different univariate and multivariate rainfall threshold models in identifying triggering conditions of debris flow in the Jiangjia Gully,Yunnan Province,China.The univariate models used single rainfall properties as indicators,including total rainfall(R_(tot)),rainfall duration(D),mean intensity(I_(mean)),absolute energy(Eabs),storm kinetic energy(E_(s)),antecedent rainfall(R_(a)),and maximum rainfall intensity over various durations(I_(max_dur)).The evaluation reveals that the I_(max_dur)and Eabs models have the best performance,followed by the E_(s),R_(tot),and I_(mean)models,while the D and R_(a)models have poor performances.Specifically,the I_(max_dur)model has the highest performance metrics at a 40-min duration.We used logistic regression to combine at least two rainfall properties to establish multivariate threshold models.The results show that adding D or R_(a)to the models dominated by Eabs,E_(s),R_(tot),or I_(mean)generally improve their performances,specifically when D is combined with I_(mean)or when R_(a)is combined with Eabs or E_(s).Including R_(a)in the I_(max_dur)model,it performs better than the univariate I_(max_dur)model.A power-law relationship between I_(max_dur)and R_(a)or between Eabs and R_(a)has better performance than the traditional I_(mean)–D model,while the performance of the E_(s)–R_(a)model is moderate.Our evaluation reemphasizes the important role of the maximum intensity over short durations in debris flow occurrence.It also highlights the importance of systematically investigating the role of R_(a)in establishing rainfall thresholds for triggering debris flow.Given the regional variations in rainfall patterns worldwide,it is necessary to evaluate the findings of this study across diverse watersheds.展开更多
Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significan...Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.展开更多
Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-ha...Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-hazards that most threaten post-disaster reconstruction, are widely distributed. We describe the characteristics of these geo-hazards in Beichuan County using high-resolution remote sensing of landslide distribution, and the relationships between the area and volume of landslides and the peak-discharges of debris flows both pre- and post-earthquake. The results show: 1) The concentration (defined as the number of landslide sources per unit area: Lc) of earthquake- triggered landslides is inversely correlated with distance from the earthquake (DF) fault. The relationship is described by the following equation: Lc = 3.2264exp(-0.0831DF) (R2 = 0.9246); 2) 87 % of the earthquake-triggered landslides were less than 15× 10^4 m2 in area, and these accounted only for 5o% of the total area; 84% of the landslide volumes were less than 60×10^4 m3, and these accounted only for 50% of the total volume. The probability densities of the area and volume distributions are correlated: landslide abundance increases with landslide area and volume up to maximum values of 5 ×10^4m2 and 30 ×10^4 m3, respectively, and then decreases exponentially. 3) The area (AL) and volume (VL) of earthquake-triggered landslides are correlated as described with the following equation: VL=6.5138AL1.0227 (R2 = 0.9231); 4)Characteristics of the debris flows changed after the earthquake because of the large amount of landslide material deposited in the gullies. Consequently, debris flow peak-discharge increased following the earthquake as described with the following equation: Vpost = 0.8421Vprel-0972 (R2 = 0.9821) (Vpre is the peak discharge ofpre-earthquake flows and the Vpost is the peak discharge of post-earthquake flows). We obtained the distribution of the landslides based on the above analyses, as well as the magnitude of both the landslides and the post-earthquake debris flows. The results can be useful for guiding post-disaster reconstruction and recovery efforts, and for the future mitigation of these geo-hazards. However, the equations presented are not recommended for use in site-specific designs. Rather, we recommend their use for mapping regional seismic landslide hazards or for the preliminary, rapid screening of sites.展开更多
Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity ...Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.展开更多
A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-...A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase,and can be used as a warning rainfall threshold for debris flows.Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin,Yunnan Province,in southwestern China,demonstrates the existence of such a characteristic rainfall.It was found that the characteristic rainfall corresponds to the daily rainfall of 90% cumulative probability by analyzing the basin's daily rainfall histogram.The result provides a simple and useful method for estimating a debris-flow warning rainfall threshold from the daily rainfall distribution.It was applied to estimate the debris-flow warning rainfall threshold for the Subaohe basin,a watershed in the 2008 Wenchuan earthquake zone with many physical characteristics similar to those of the Jiangjia basin.展开更多
Most debris flows occur in valleys of area smaller than 50 km2. While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We p...Most debris flows occur in valleys of area smaller than 50 km2. While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We propose that debris flow develops by extending from tributaries to the mainstream. The debris flow observed in the mainstream is the confluence of the tributary flows and the process of the confluence can be considered as a combination of the tributary elements. The frequency distribution of tributaries is found subject to the Weibull form (or its generalizations). And the same distribution form applies to the discharge of debris flow. Then the process of debris flow is related to the geometric structure of the valley. Moreover, viewed from a large scale of water system, all valleys are tributaries, which have been found to assume the same distribution. With each valley corresponding to a debris flow, the distribution can be taken as the frequency distribution of debris flow and therefore provides a quantitative description of the fact that debris flow is inclined to occur at valley of small size. Furthermore, different parameters appear in different regions, suggesting the regional differentials of debris flow potential. We can use the failure rate, instead of the size per se, to describe the risk of a valley of a given area. Finally we claim that the valleys of debris flow in different regions are in the similar episode of evolution.展开更多
A model of debris flow risk zoning is carried out with momentum analysis of debris flow. This model zones the debris flow inundation fan with density and velocity calculated by numerical simulation. The risk classific...A model of debris flow risk zoning is carried out with momentum analysis of debris flow. This model zones the debris flow inundation fan with density and velocity calculated by numerical simulation. The risk classification standard is determined according to the ultimate bearing capacities of different structures under impacting. And the ultimate bearing capacities are tested by impact failure experiment of destruction. Two structures typical in Chinese mountain towns, reinforced concrete frame construction and brickwork with concrete, are chosen in the experiment. The model makes debris flow risk zoning quantitative and the results comparable widely. The results differ much from that of other methods especially in the identification of medium and low risk zones.展开更多
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0902)the National Natural Science Foundation of China(91747207,41790434)。
文摘Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.
基金supported by the National Key R&D Program of China(No.2023YFC3007205)the National Natural Science Foundation of China(Nos.42271013,42077440)Project of the Department of Science and Technology of Sichuan Province(No.2023ZHCG0012).
文摘Systematically determining the discriminatory power of various rainfall properties and their combinations in identifying debris flow occurrence is crucial for early warning systems.In this study,we evaluated the discriminatory power of different univariate and multivariate rainfall threshold models in identifying triggering conditions of debris flow in the Jiangjia Gully,Yunnan Province,China.The univariate models used single rainfall properties as indicators,including total rainfall(R_(tot)),rainfall duration(D),mean intensity(I_(mean)),absolute energy(Eabs),storm kinetic energy(E_(s)),antecedent rainfall(R_(a)),and maximum rainfall intensity over various durations(I_(max_dur)).The evaluation reveals that the I_(max_dur)and Eabs models have the best performance,followed by the E_(s),R_(tot),and I_(mean)models,while the D and R_(a)models have poor performances.Specifically,the I_(max_dur)model has the highest performance metrics at a 40-min duration.We used logistic regression to combine at least two rainfall properties to establish multivariate threshold models.The results show that adding D or R_(a)to the models dominated by Eabs,E_(s),R_(tot),or I_(mean)generally improve their performances,specifically when D is combined with I_(mean)or when R_(a)is combined with Eabs or E_(s).Including R_(a)in the I_(max_dur)model,it performs better than the univariate I_(max_dur)model.A power-law relationship between I_(max_dur)and R_(a)or between Eabs and R_(a)has better performance than the traditional I_(mean)–D model,while the performance of the E_(s)–R_(a)model is moderate.Our evaluation reemphasizes the important role of the maximum intensity over short durations in debris flow occurrence.It also highlights the importance of systematically investigating the role of R_(a)in establishing rainfall thresholds for triggering debris flow.Given the regional variations in rainfall patterns worldwide,it is necessary to evaluate the findings of this study across diverse watersheds.
基金supported by the Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-based Materials Open Research Program (Grant No. 2022SNJ112022SNJ12)+4 种基金National Natural Science Foundation of China (Grant No. 42371014)Hubei Key Laboratory of Disaster Prevention and Mitigation (China Three Gorges University) Open Research Program (Grant No. 2022KJZ122023KJZ19)CRSRI Open Research Program (Grant No. CKWV2021888/KY)the Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences (Grant No. KLMHESP20-0)。
文摘Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.
基金supported by the National Key Fundamental Research Program of China (973) (2008CB425802)The Project Group of Knowledge Innovation Program of Chinese Academy Sciences (KZCX2-YW-Q03-5)
文摘Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-hazards that most threaten post-disaster reconstruction, are widely distributed. We describe the characteristics of these geo-hazards in Beichuan County using high-resolution remote sensing of landslide distribution, and the relationships between the area and volume of landslides and the peak-discharges of debris flows both pre- and post-earthquake. The results show: 1) The concentration (defined as the number of landslide sources per unit area: Lc) of earthquake- triggered landslides is inversely correlated with distance from the earthquake (DF) fault. The relationship is described by the following equation: Lc = 3.2264exp(-0.0831DF) (R2 = 0.9246); 2) 87 % of the earthquake-triggered landslides were less than 15× 10^4 m2 in area, and these accounted only for 5o% of the total area; 84% of the landslide volumes were less than 60×10^4 m3, and these accounted only for 50% of the total volume. The probability densities of the area and volume distributions are correlated: landslide abundance increases with landslide area and volume up to maximum values of 5 ×10^4m2 and 30 ×10^4 m3, respectively, and then decreases exponentially. 3) The area (AL) and volume (VL) of earthquake-triggered landslides are correlated as described with the following equation: VL=6.5138AL1.0227 (R2 = 0.9231); 4)Characteristics of the debris flows changed after the earthquake because of the large amount of landslide material deposited in the gullies. Consequently, debris flow peak-discharge increased following the earthquake as described with the following equation: Vpost = 0.8421Vprel-0972 (R2 = 0.9821) (Vpre is the peak discharge ofpre-earthquake flows and the Vpost is the peak discharge of post-earthquake flows). We obtained the distribution of the landslides based on the above analyses, as well as the magnitude of both the landslides and the post-earthquake debris flows. The results can be useful for guiding post-disaster reconstruction and recovery efforts, and for the future mitigation of these geo-hazards. However, the equations presented are not recommended for use in site-specific designs. Rather, we recommend their use for mapping regional seismic landslide hazards or for the preliminary, rapid screening of sites.
基金supported by the National Natural Science Foundation of China (Grant No. 40771026)the NSFC-RFBR project (Grant No. 40911120089, 08-05-92206 NSFCa)
文摘Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.
基金funded by the National Program on Key Basic Research Project (973 Program) (Grant No. 2008CB425802)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX2-YW-302)the National Natural Science Foundation of China (Grant No. 40701014)
文摘A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase,and can be used as a warning rainfall threshold for debris flows.Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin,Yunnan Province,in southwestern China,demonstrates the existence of such a characteristic rainfall.It was found that the characteristic rainfall corresponds to the daily rainfall of 90% cumulative probability by analyzing the basin's daily rainfall histogram.The result provides a simple and useful method for estimating a debris-flow warning rainfall threshold from the daily rainfall distribution.It was applied to estimate the debris-flow warning rainfall threshold for the Subaohe basin,a watershed in the 2008 Wenchuan earthquake zone with many physical characteristics similar to those of the Jiangjia basin.
基金the National Natural Science Foundation of China (Grant No.40771010 and No.40671025);the Innovation Project of IMHE, CAS (1100001062).
文摘Most debris flows occur in valleys of area smaller than 50 km2. While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We propose that debris flow develops by extending from tributaries to the mainstream. The debris flow observed in the mainstream is the confluence of the tributary flows and the process of the confluence can be considered as a combination of the tributary elements. The frequency distribution of tributaries is found subject to the Weibull form (or its generalizations). And the same distribution form applies to the discharge of debris flow. Then the process of debris flow is related to the geometric structure of the valley. Moreover, viewed from a large scale of water system, all valleys are tributaries, which have been found to assume the same distribution. With each valley corresponding to a debris flow, the distribution can be taken as the frequency distribution of debris flow and therefore provides a quantitative description of the fact that debris flow is inclined to occur at valley of small size. Furthermore, different parameters appear in different regions, suggesting the regional differentials of debris flow potential. We can use the failure rate, instead of the size per se, to describe the risk of a valley of a given area. Finally we claim that the valleys of debris flow in different regions are in the similar episode of evolution.
文摘A model of debris flow risk zoning is carried out with momentum analysis of debris flow. This model zones the debris flow inundation fan with density and velocity calculated by numerical simulation. The risk classification standard is determined according to the ultimate bearing capacities of different structures under impacting. And the ultimate bearing capacities are tested by impact failure experiment of destruction. Two structures typical in Chinese mountain towns, reinforced concrete frame construction and brickwork with concrete, are chosen in the experiment. The model makes debris flow risk zoning quantitative and the results comparable widely. The results differ much from that of other methods especially in the identification of medium and low risk zones.