Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rare...Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.展开更多
共形阵的载体曲率形式复杂,导致抛面共形阵的方向图指向不同,而且不同天线单元的极化特性迥异。常见的圆柱阵、圆锥阵在同一母线上的极化分量是相同的,但是抛面共形阵的载体曲率是变化的,因此抛面共形阵的参数估计问题需要考虑极化分量...共形阵的载体曲率形式复杂,导致抛面共形阵的方向图指向不同,而且不同天线单元的极化特性迥异。常见的圆柱阵、圆锥阵在同一母线上的极化分量是相同的,但是抛面共形阵的载体曲率是变化的,因此抛面共形阵的参数估计问题需要考虑极化分量的影响,导致无法直接用同一母线上阵元回波数据结合免搜索算法获得目标二维波达方向(direction of arrival,DOA)估计。首先,提出一种通过插值拟合思想将抛面共形阵带有极化参数的阵列流形拟合成无极化参数的阵列流形,然后合理选择子阵对,再利用旋转不变技术估计信号参数(estimation of signal parameters via rotational invariance techniques,ESPRIT)方法实现盲极化的DOA估计,同时给出了经过插值拟合后的克拉美罗边界(Cramer-Rao bound,CRB)。最后仿真验证了方法的有效性。展开更多
圆柱极化敏感阵列可直接利用同一母线上的阵列数据估计目标的俯仰角,但是在估计方位角时面临未知极化的影响。对此,提出一种降维插值方法,解决圆柱极化敏感阵列在未知极化下的二维波达方向(two-dimensional direction-of-arrival,2D-DOA...圆柱极化敏感阵列可直接利用同一母线上的阵列数据估计目标的俯仰角,但是在估计方位角时面临未知极化的影响。对此,提出一种降维插值方法,解决圆柱极化敏感阵列在未知极化下的二维波达方向(two-dimensional direction-of-arrival,2D-DOA)估计问题。首先通过母线阵列的旋转不变性估计俯仰角,然后利用估计的俯仰角降维设计插值方法的感兴趣范围(range of interest,ROI),最后利用降维插值方法得到对应的方位角估计值。圆柱天线阵的每个阵元只需由一个电偶极子构成,有效降低了系统运算负担和阵元间的互耦效应。数值实验验证了所提方法的2D-DOA估计性能。展开更多
In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-bas...In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-based STAP method,the influence of the array amplitude-phase error is not considered and restrained,which inevitably causes performance deterioration.To solve this problem,the array amplitude-phase error is firstly estimated.Then,by pre-estimating the array amplitude-phase error information,a modified ANM model is built,in which the array amplitude-phase error factor is separated from the clutter response and the clutter covariance matrix(CCM)to improve the estimation accuracy of the CCM.To prove that the atomic norm theory is applicable in the presence of the array amplitude-phase error,the clutter sparsity is analyzed in this paper.Meanwhile,simulation results demonstrate that the proposed method is superior to the state-of-the-art STAP method.Moreover,the measured data is used to verify the effectiveness of the proposed method.展开更多
Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,b...Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,but also can enhance the performance of tracking radars.A frequency-agile refined maximum likelihood(RML)algorithm based on optimal fusion is proposed.The algorithm constructs an optimization problem,which minimizes the mean square error(MSE)of angle estimation.Thereby,the optimal weight at different frequency points is obtained for fusing the angle estimation.Through theoretical analysis and simulation,the frequency-agile RML algorithm based on optimal fusion can improve the accuracy of angle estimation effectively.展开更多
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs (B18039)。
文摘Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.
文摘共形阵的载体曲率形式复杂,导致抛面共形阵的方向图指向不同,而且不同天线单元的极化特性迥异。常见的圆柱阵、圆锥阵在同一母线上的极化分量是相同的,但是抛面共形阵的载体曲率是变化的,因此抛面共形阵的参数估计问题需要考虑极化分量的影响,导致无法直接用同一母线上阵元回波数据结合免搜索算法获得目标二维波达方向(direction of arrival,DOA)估计。首先,提出一种通过插值拟合思想将抛面共形阵带有极化参数的阵列流形拟合成无极化参数的阵列流形,然后合理选择子阵对,再利用旋转不变技术估计信号参数(estimation of signal parameters via rotational invariance techniques,ESPRIT)方法实现盲极化的DOA估计,同时给出了经过插值拟合后的克拉美罗边界(Cramer-Rao bound,CRB)。最后仿真验证了方法的有效性。
文摘圆柱极化敏感阵列可直接利用同一母线上的阵列数据估计目标的俯仰角,但是在估计方位角时面临未知极化的影响。对此,提出一种降维插值方法,解决圆柱极化敏感阵列在未知极化下的二维波达方向(two-dimensional direction-of-arrival,2D-DOA)估计问题。首先通过母线阵列的旋转不变性估计俯仰角,然后利用估计的俯仰角降维设计插值方法的感兴趣范围(range of interest,ROI),最后利用降维插值方法得到对应的方位角估计值。圆柱天线阵的每个阵元只需由一个电偶极子构成,有效降低了系统运算负担和阵元间的互耦效应。数值实验验证了所提方法的2D-DOA估计性能。
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)。
文摘In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-based STAP method,the influence of the array amplitude-phase error is not considered and restrained,which inevitably causes performance deterioration.To solve this problem,the array amplitude-phase error is firstly estimated.Then,by pre-estimating the array amplitude-phase error information,a modified ANM model is built,in which the array amplitude-phase error factor is separated from the clutter response and the clutter covariance matrix(CCM)to improve the estimation accuracy of the CCM.To prove that the atomic norm theory is applicable in the presence of the array amplitude-phase error,the clutter sparsity is analyzed in this paper.Meanwhile,simulation results demonstrate that the proposed method is superior to the state-of-the-art STAP method.Moreover,the measured data is used to verify the effectiveness of the proposed method.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039).
文摘Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,but also can enhance the performance of tracking radars.A frequency-agile refined maximum likelihood(RML)algorithm based on optimal fusion is proposed.The algorithm constructs an optimization problem,which minimizes the mean square error(MSE)of angle estimation.Thereby,the optimal weight at different frequency points is obtained for fusing the angle estimation.Through theoretical analysis and simulation,the frequency-agile RML algorithm based on optimal fusion can improve the accuracy of angle estimation effectively.