Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show...Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show that one can develop a Gaussian Beam Equivalent Point Source (GBEPS) model that removes those weaknesses and combines the accuracy and versatility of the point source models with much of the speed and well-behaved nature of Gaussian beam models. We will demonstrate the efficiency and versatility of this new GBEPS model in simulating the beams generated from ultrasonic phased arrays, using as few as one Gaussian beam per element of the array. A single element GBEPS model will be shown to be as accurate as a point source model even when substantial beam focusing or steering is present in the array or where the array beam is transmitted through an interface. At the same time the GBEPS model will be shown to be several orders of magnitude faster than the point source model.展开更多
基金supported by the National Science Foundation Industry/University Cooperative Research Center program at Iowa State Universitythe Natural Sciences and Engineering Research Council of Canadaby the National Natural Science Foundation of China(NSFC)
文摘Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show that one can develop a Gaussian Beam Equivalent Point Source (GBEPS) model that removes those weaknesses and combines the accuracy and versatility of the point source models with much of the speed and well-behaved nature of Gaussian beam models. We will demonstrate the efficiency and versatility of this new GBEPS model in simulating the beams generated from ultrasonic phased arrays, using as few as one Gaussian beam per element of the array. A single element GBEPS model will be shown to be as accurate as a point source model even when substantial beam focusing or steering is present in the array or where the array beam is transmitted through an interface. At the same time the GBEPS model will be shown to be several orders of magnitude faster than the point source model.