By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton...By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be f...An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be found by this new method, which include kink-shaped soliton solutions, bell-shaped soliton solutions and new solitary wave.The new method can be applied to other nonlinear equations in mathematical physics.展开更多
By using the extended homogeneous balance method, a new auto-Ba^ecklund transformation(BT) to the generalized Kadomtsew-Petviashvili equation with variable coefficients (VCGKP) are obtained. And making use of the auto...By using the extended homogeneous balance method, a new auto-Ba^ecklund transformation(BT) to the generalized Kadomtsew-Petviashvili equation with variable coefficients (VCGKP) are obtained. And making use of the auto-BT and choosing a special seed solution, we get many families of new exact solutions of the VCGKP equations, which include single soliton-like solutions, multi-soliton-like solutions, and special-soliton-like solutions. Since the KP equation and cylindrical KP equation are all special cases of the VCGKP equation, and the corresponding results of these equations are also given respectively.展开更多
A nonlinear transformation and some multi-solition solutions for the (2+1 )-dimensional generalized Broer-Kaup (GBK) system is first given by using the homogeneous balance method. Then starting from the nonlinear tran...A nonlinear transformation and some multi-solition solutions for the (2+1 )-dimensional generalized Broer-Kaup (GBK) system is first given by using the homogeneous balance method. Then starting from the nonlinear transformation, we reduce the (2+ 1)-dimensional GBK system to a simple linear evolution equation. Solving this equation,we can obtain some new explicit exact solutions of the original equations by means of the extended hyperbola function method.展开更多
文摘By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
文摘An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be found by this new method, which include kink-shaped soliton solutions, bell-shaped soliton solutions and new solitary wave.The new method can be applied to other nonlinear equations in mathematical physics.
文摘By using the extended homogeneous balance method, a new auto-Ba^ecklund transformation(BT) to the generalized Kadomtsew-Petviashvili equation with variable coefficients (VCGKP) are obtained. And making use of the auto-BT and choosing a special seed solution, we get many families of new exact solutions of the VCGKP equations, which include single soliton-like solutions, multi-soliton-like solutions, and special-soliton-like solutions. Since the KP equation and cylindrical KP equation are all special cases of the VCGKP equation, and the corresponding results of these equations are also given respectively.
文摘A nonlinear transformation and some multi-solition solutions for the (2+1 )-dimensional generalized Broer-Kaup (GBK) system is first given by using the homogeneous balance method. Then starting from the nonlinear transformation, we reduce the (2+ 1)-dimensional GBK system to a simple linear evolution equation. Solving this equation,we can obtain some new explicit exact solutions of the original equations by means of the extended hyperbola function method.