Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This a...Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This approach significantly increases the recovery efficiency of low-permeability oil and gas fields.Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs.However,few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number.This study analyzed the initiation and propagation of cracks under LCPTB,derived a calculation formula for crack propagation radius under stress waves,and then proposed a new,fast,and accurate method for calculating the fracture number using the principle of mass conservation.Through ten rock-breaking tests using LCPTB,the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure,rock-breaking scenario,and the impact of varying parameters on fracture number.The results show that the new calculation method is suitable for fracturing technologies with high pressure rates.Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness.Moreover,the method can be applied to other fracturing technologies,such as explosive fracturing(EF)within HF formations,indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrest...Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.展开更多
Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To imp...Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution.展开更多
Euphausia superba and Thysanoessa macrura are dominant krill species in the Southern Ocean and their habitats are often overlapped reportedly.Studies of the feeding strategies of these two krill species will help us b...Euphausia superba and Thysanoessa macrura are dominant krill species in the Southern Ocean and their habitats are often overlapped reportedly.Studies of the feeding strategies of these two krill species will help us better understand the coexistence mechanisms and estimate the roles that krill played in the food web of the Southern Ocean.The trophodynamics of E.superba and T.macrura at different ontogenetic stages(furcilia,juvenile,adult)were studied using fatty acid and stable isotope biomarkers in the samples collected in Amundsen Sea during austral summer of 2017/2018 and 2018/2019.Diatoms like Fragilariopsis spp.was the most abundant phytoplankton species in the summer of 2017/2018,while the abundance of phytoplankton in the summer of 2018/2019 was dominated by Phaeocystis sp.The gradual increase of the carnivorous index 18꞉1n-9/18꞉1n-7 with ontogeny of both species in 2018/2019 indicated more carnivorous feeding of adults compared with juveniles and larvae.Meanwhile,greaterδ15N values of T.macrura than that of E.superba were more significant in the juvenile and adult stages during the summer of 2018/2019.Our results indicate that the trophic niche differentiation between the two krill species appeared in postlarval stage and can be influenced by food availability.Compared with E.superba,T.macrura was more prone to feed omnivorously or carnivorously responding to food availability.展开更多
Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorpti...Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorptive root traits. Seven functional traits of the absorptive roots of 240 individuals of 52 species, soil properties and air temperature were measured along an elevational gradient on Mt. Fanjingshan, Tongren City, Guizhou, and then the direct and indirect effects of these controls on species distribution were detected.Results: Absorptive roots adapted to air temperature with two strategies. The first strategy was positively associated with the specific root area(SRA) and specific root length(SRL) and was negatively associated with the root tissue density(RTD), representing the classic root economics spectrum(RES). The second strategy was represented by the trade-off between root diameter, mycorrhizal fungi colonization(MF) and SRL, representing the collaboration gradient with “do it yourself” resource uptake ranging from “outsourcing” to mycorrhizal resource uptake. Air temperature regulated species distribution in six ways: directly reducing species importance value;indirectly increasing the species importance value by reducing soil nitrogen content or increasing soil pH by reducing soil moisture inducing absorptive roots to change from “do it yourself” resource absorption to “outsourcing” resource absorption;indirectly decreasing the species importance value by decreasing soil moisture to change from“outsourcing”resource absorption to “do it yourself” resource absorption;indirectly increasing the species importance value with increasing soil pH by reducing soil moisture resulting in absorptive root traits turning into nutrient foraging traits;and indirectly decreasing the species importance value by promoting absorptive root traits to nutrient conservation traits.Conclusions: Absorptive root traits play a crucial role in the regulation of species distribution through multiapproaches of air temperature.展开更多
Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression ...Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression profiles in various soybean tissues at various stages of development indicated that Gm Dna JAs function in the coordination of stress and plant hormone responses.Gm Dna JA6 was identified as a candidate regulator of saline and alkaline stress resistance and Gm Dna JA6 overexpression lines showed increased soybean saline and alkaline tolerance.Dna J interacted with Hsp70,and Gm Hsp70 increased the saline and alkaline tolerance of plants with chimeric soybean hairy roots.展开更多
The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabol...The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.展开更多
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
Magnesium-ion batteries(MIBs)have attracted extensive attention due to their high theoretical capacity,superior safety,and low cost.Nonetheless,the development of MIBs is hindered by the lack of cathode materials with...Magnesium-ion batteries(MIBs)have attracted extensive attention due to their high theoretical capacity,superior safety,and low cost.Nonetheless,the development of MIBs is hindered by the lack of cathode materials with long cycle life and rate capability.MXene stands out as a prime choice for MIB cathode or collector for anode-free magnesium batteries(AFMBs)because of its larger surface area,adjustable surface properties,and good electrical conductivity.In this paper,we summarized the preparation and layering methods of MXene and discussed the prospects of MXene as a cathode or collector for MIBs.This review will be immensely beneficial in critically analyzing the synthesis techniques and the applications of MXene material as MIB cathode or AFMB collector.In addition,the challenges of the preparation and layering were concluded,along with raising the research strategies of MXene for storing Mg ions.展开更多
The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers an...The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.展开更多
The impact of structural stiffness on optical axis deviation poses a significant challenge in the design of equatorial telescope structures.A comprehensive analysis during the design process can reduce the reliance of...The impact of structural stiffness on optical axis deviation poses a significant challenge in the design of equatorial telescope structures.A comprehensive analysis during the design process can reduce the reliance of a telescope on advanced control technologies,thereby improving its economic feasibility.Although full-system finite element analyses are reliable,they are encumbered by significant time requirements and limitations in covering all possible telescope orientations.Therefore,we propose an efficient and comprehensive analytical method to evaluate the optical axis deviation of equatorial telescopes across a full range of angles.To address the challenge of ensuring that the analysis covers all possible positions of an equatorial telescope,based on a model from SiTian project,we analyze the optical axis deviations caused by the fork arm at 25 different angles and then use fitting methods to obtain results for all angles.Based on the analysis results of the optical axis deviation caused by the stiffness of the optical tube in the horizontal position,we derive the results for the tube at any position using geometric relationships.Finally,we calculate the coupling factors and combine these impacts.Furthermore,we identify six discrete feature points to reflect possible telescope orientations and conduct comprehensive finite element analyses.The results are in alignment with those acquired through a comprehensive computational approach.展开更多
线粒体是细胞中产生能量的重要细胞器,各种原因导致的线粒体损伤是促进疾病进展的重要因素。线粒体损伤涉及结构损伤及线粒体 DNA 损伤,与呼吸系统疾病发生发展密切相关。近年来,大量研究证实线粒体损伤在呼吸系统疾病进展中扮演重要角...线粒体是细胞中产生能量的重要细胞器,各种原因导致的线粒体损伤是促进疾病进展的重要因素。线粒体损伤涉及结构损伤及线粒体 DNA 损伤,与呼吸系统疾病发生发展密切相关。近年来,大量研究证实线粒体损伤在呼吸系统疾病进展中扮演重要角色,可能是中医药治疗呼吸系统疾病的重要靶点。本文综述了中医药调控线粒体损伤在干预慢性阻塞性肺疾病、肺癌、肺纤维化、急性肺损伤、哮喘、肺炎等呼吸系统疾病中的作用,旨在为呼吸系统疾病的发病机制及药物作用靶点研究提供依据。展开更多
Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. H...Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.展开更多
MXene has shown distinctive advantages as anode materials of lithium-ion batteries. However, local surface chemistry, which was confirmed that can block ion transfer and limit redox reaction, has a significant effect ...MXene has shown distinctive advantages as anode materials of lithium-ion batteries. However, local surface chemistry, which was confirmed that can block ion transfer and limit redox reaction, has a significant effect on electrochemical performance. Herein, annealing MXene under hydrogen was employed for removing-F and turning-OH to-O terminations. We demonstrate that it improves the kinetics of Li-ion transport between the electrolyte and electrode. As a result, a lower interfacial charge transfer impedance was obtained. The electrochemical measurement exhibited that a nearly 2-fold increase of specific capacity was achieved for the annealed MXene.展开更多
The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced...The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced by the graphitic carbon nitride/carbon nanotube(g-C_3 N_4/CNT) composite toward inhibited shuttling behavior and improved battery performance.The obtained g-C_3 N_4 delivers a unique spongelike architecture with massive ion transfer pathways and fully exposed active interfaces,while the abundant C-N heteroatomic structures impose strong chemical immobilization toward lithium polysulfides.Combined with the highly conductive agent,the g-C_3 N_4/CNT reinforced separator is endowed with great capability of confining and reutilizing the active sulfur within the cathode,thus contributing to an efficient and stable sulfur electrochemistry.Benefiting from these synergistic attributes,Li-S cells based on g-C_3 N_4/CNT separator exhibit an excellent cyclability with a minimum decay rate of 0.03% per cycle over 500 cycles and decent rate capability up to 2 C.Moreover,a high areal capacity of 7.69 mAh cm^(-2)can be achieved under a raised sulfur loading up to 10.1 mg cm^(-2).demonstrating a facile and efficient pathway toward superior Li-S batteries.展开更多
Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Here...Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.展开更多
The three-dimensional(3D)pore structures and permeability of shale are critical for forecasting gas production capacity and guiding pressure differential control in practical reservoir extraction.However,few investiga...The three-dimensional(3D)pore structures and permeability of shale are critical for forecasting gas production capacity and guiding pressure differential control in practical reservoir extraction.However,few investigations have analyzed the effects of microscopic organic matter(OM)morphology and 3D pore nanostructures on the stress sensitivity,which are precisely the most unique and controlling factors of reservoir quality in shales.In this study,ultra-high nanoscale-resolution imaging experiments,i.e.focused ion beam-scanning electron microscopy(FIB-SEMs),were conducted on two organic-rich shale samples from Longmaxi and Wufeng Formations in northern Guizhou Depression,China.Pore morphology,porosity of 3D pore nanostructures,pore size distribution,and connectivity of the six selected regions of interest(including clump-shaped OMs,interstitial OMs,framboidal pyrite,and microfractures)were qualitatively and quantitatively characterized.Pulse decay permeability(PDP)measurement was used to investigate the variation patterns of stress-dependent permeability and stress sensitivity of shales under different confining pressures and pore pressures,and the results were then used to calculate the Biot coefficients for the two shale formations.The results showed that the samples have high OM porosity and 85%of the OM pores have the radius of less than 40 nm.The OM morphology and pore structure characteristics of the Longmaxi and Wufeng Formations were distinctly different.In particular,the OM in the Wufeng Formation samples developed some OM pores with radius larger than500 nm,which significantly improved the connectivity.The macroscopic permeability strongly depends on the permeability of OM pores.The stress sensitivity of permeability of Wufeng Formation was significantly lower than that of Longmaxi Formation,due to the differences in OM morphology and pore structures.The Biot coefficients of 0.729 and 0.697 were obtained for the Longmaxi and Wufeng Formations,respectively.展开更多
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
基金supported by the National Key R&D Program of China (Grant No.2020YFA0711802).
文摘Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This approach significantly increases the recovery efficiency of low-permeability oil and gas fields.Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs.However,few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number.This study analyzed the initiation and propagation of cracks under LCPTB,derived a calculation formula for crack propagation radius under stress waves,and then proposed a new,fast,and accurate method for calculating the fracture number using the principle of mass conservation.Through ten rock-breaking tests using LCPTB,the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure,rock-breaking scenario,and the impact of varying parameters on fracture number.The results show that the new calculation method is suitable for fracturing technologies with high pressure rates.Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness.Moreover,the method can be applied to other fracturing technologies,such as explosive fracturing(EF)within HF formations,indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
基金support of the National Natural Science Foundation of China(Grant No.42102316)the Open Project of the Technology Innovation Center for Geological Environment Monitoring of Ministry of Natural Resources of China(Grant No.2022KFK1212005).
文摘Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.
基金supported by the National Natural Science Foundation of China(61773269)China Scholarship for Overseas Studying(CSC No.202008210181),Department of Education of Liaoning Province of China(LJKZ1110)+1 种基金the Natural Science Foundation of Liaoning Province of China(2019-KF-03-08)the Program for Shenyang High Level Innovative Talents(RC190042).
文摘Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution.
基金Supported by the National Key Research and Development Plan of China(No.2018YFC1406801)the National Natural Science Foundation of China(No.41876217)+1 种基金the Impact and Response of Antarctic Seas to Climate Change(No.IRASCC 01-02-01D)the Taishan Scholars Program。
文摘Euphausia superba and Thysanoessa macrura are dominant krill species in the Southern Ocean and their habitats are often overlapped reportedly.Studies of the feeding strategies of these two krill species will help us better understand the coexistence mechanisms and estimate the roles that krill played in the food web of the Southern Ocean.The trophodynamics of E.superba and T.macrura at different ontogenetic stages(furcilia,juvenile,adult)were studied using fatty acid and stable isotope biomarkers in the samples collected in Amundsen Sea during austral summer of 2017/2018 and 2018/2019.Diatoms like Fragilariopsis spp.was the most abundant phytoplankton species in the summer of 2017/2018,while the abundance of phytoplankton in the summer of 2018/2019 was dominated by Phaeocystis sp.The gradual increase of the carnivorous index 18꞉1n-9/18꞉1n-7 with ontogeny of both species in 2018/2019 indicated more carnivorous feeding of adults compared with juveniles and larvae.Meanwhile,greaterδ15N values of T.macrura than that of E.superba were more significant in the juvenile and adult stages during the summer of 2018/2019.Our results indicate that the trophic niche differentiation between the two krill species appeared in postlarval stage and can be influenced by food availability.Compared with E.superba,T.macrura was more prone to feed omnivorously or carnivorously responding to food availability.
基金financially supported by the National Nature Science Foundation of China (No.32001248)the Characteristic Field Project of Department of Education of Guizhou Province (NO.[2019]075)+3 种基金PhD Research Start-up Foundation of Tongren University (No.trxyDH1807)Guizhou Forestry Research Project (No.[2019]014)the Science and Technology Plan Project of Guizhou Province (NO.[2019]1312,NO.[2022]general-556)the Key Laboratory Project of Guizhou Province (No.[2020]2003)
文摘Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorptive root traits. Seven functional traits of the absorptive roots of 240 individuals of 52 species, soil properties and air temperature were measured along an elevational gradient on Mt. Fanjingshan, Tongren City, Guizhou, and then the direct and indirect effects of these controls on species distribution were detected.Results: Absorptive roots adapted to air temperature with two strategies. The first strategy was positively associated with the specific root area(SRA) and specific root length(SRL) and was negatively associated with the root tissue density(RTD), representing the classic root economics spectrum(RES). The second strategy was represented by the trade-off between root diameter, mycorrhizal fungi colonization(MF) and SRL, representing the collaboration gradient with “do it yourself” resource uptake ranging from “outsourcing” to mycorrhizal resource uptake. Air temperature regulated species distribution in six ways: directly reducing species importance value;indirectly increasing the species importance value by reducing soil nitrogen content or increasing soil pH by reducing soil moisture inducing absorptive roots to change from “do it yourself” resource absorption to “outsourcing” resource absorption;indirectly decreasing the species importance value by decreasing soil moisture to change from“outsourcing”resource absorption to “do it yourself” resource absorption;indirectly increasing the species importance value with increasing soil pH by reducing soil moisture resulting in absorptive root traits turning into nutrient foraging traits;and indirectly decreasing the species importance value by promoting absorptive root traits to nutrient conservation traits.Conclusions: Absorptive root traits play a crucial role in the regulation of species distribution through multiapproaches of air temperature.
基金financially supported by Natural Science Foundation of Heilongjiang(TD2022C003,JJ2022YX0475)National Key Research and Development Program of China(2021YFD1201104-02-02,2021YFF1001202)+1 种基金Backbone of Young Talent Scholar Project of Northeast Agricultural University(to Ying Zhao)the National Natural Science Foundation of China(U20A2027,31971899,32272093,32272072)。
文摘Plant Dna JA proteins act as molecular chaperones in response to environmental stressors.The purpose of this study was to characterize the function and regulatory mechanisms of Dna JA genes in soybean.Gene expression profiles in various soybean tissues at various stages of development indicated that Gm Dna JAs function in the coordination of stress and plant hormone responses.Gm Dna JA6 was identified as a candidate regulator of saline and alkaline stress resistance and Gm Dna JA6 overexpression lines showed increased soybean saline and alkaline tolerance.Dna J interacted with Hsp70,and Gm Hsp70 increased the saline and alkaline tolerance of plants with chimeric soybean hairy roots.
基金supported by the National Natural Science Foundation of China,Nos.81974134(to XX)and 82000895(to HL)National Key Research and Development Program of China,Nos.2021YFA1101200&2021YFA1101202National Natural Science Foundation of Hunan Province,China,No.2022JJ30071(to HL)。
文摘The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
基金supported by the Key Technologies Research and Development Program(2019YFC1803804)Shenyang Science and Technology Program(22-322-3-01)National College Students Innovation and Entrepreneurship Training Program(231115)。
文摘Magnesium-ion batteries(MIBs)have attracted extensive attention due to their high theoretical capacity,superior safety,and low cost.Nonetheless,the development of MIBs is hindered by the lack of cathode materials with long cycle life and rate capability.MXene stands out as a prime choice for MIB cathode or collector for anode-free magnesium batteries(AFMBs)because of its larger surface area,adjustable surface properties,and good electrical conductivity.In this paper,we summarized the preparation and layering methods of MXene and discussed the prospects of MXene as a cathode or collector for MIBs.This review will be immensely beneficial in critically analyzing the synthesis techniques and the applications of MXene material as MIB cathode or AFMB collector.In addition,the challenges of the preparation and layering were concluded,along with raising the research strategies of MXene for storing Mg ions.
基金financial support from the National Key R&D Program of China(Grant No.2020YFA0711802).
文摘The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.
文摘The impact of structural stiffness on optical axis deviation poses a significant challenge in the design of equatorial telescope structures.A comprehensive analysis during the design process can reduce the reliance of a telescope on advanced control technologies,thereby improving its economic feasibility.Although full-system finite element analyses are reliable,they are encumbered by significant time requirements and limitations in covering all possible telescope orientations.Therefore,we propose an efficient and comprehensive analytical method to evaluate the optical axis deviation of equatorial telescopes across a full range of angles.To address the challenge of ensuring that the analysis covers all possible positions of an equatorial telescope,based on a model from SiTian project,we analyze the optical axis deviations caused by the fork arm at 25 different angles and then use fitting methods to obtain results for all angles.Based on the analysis results of the optical axis deviation caused by the stiffness of the optical tube in the horizontal position,we derive the results for the tube at any position using geometric relationships.Finally,we calculate the coupling factors and combine these impacts.Furthermore,we identify six discrete feature points to reflect possible telescope orientations and conduct comprehensive finite element analyses.The results are in alignment with those acquired through a comprehensive computational approach.
基金the National Natural Science Foundation of China(82104662)Science and Technology Research Key Project of Henan Province(222102310141,232102310435)Postdoctoral Research Project of Henan Province(202101046)。
文摘线粒体是细胞中产生能量的重要细胞器,各种原因导致的线粒体损伤是促进疾病进展的重要因素。线粒体损伤涉及结构损伤及线粒体 DNA 损伤,与呼吸系统疾病发生发展密切相关。近年来,大量研究证实线粒体损伤在呼吸系统疾病进展中扮演重要角色,可能是中医药治疗呼吸系统疾病的重要靶点。本文综述了中医药调控线粒体损伤在干预慢性阻塞性肺疾病、肺癌、肺纤维化、急性肺损伤、哮喘、肺炎等呼吸系统疾病中的作用,旨在为呼吸系统疾病的发病机制及药物作用靶点研究提供依据。
基金financially supported by the Natural Science Foundation of Beijing (No. L182062)the Beijing Nova program (Z171100001117077)+5 种基金the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No.2014QJ02)the program for the Development of Science and Technology of Jilin Province (Nos. 20190201309JC and 20190101009JH)the Project of Development and Reform Commission of Jilin Province (No. 2019C042-1)the support from Natural Sciences and Engineering Research Council of Canada (NSERC)the University of Waterloo.
文摘Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.
基金financial support provided by the National Key R&D Program of China (2016YFA0200400)the Jilin Province/Jilin University co-Construction Project-Funds for New Materials (SXGJSF2017-3, Branch-2/440050316A36)+4 种基金the National Natural Science Foundation of China (Grant nos. 91545119, 21761132025, 21773269 and 51372095)the Youth Innovation Promotion Association CAS (Grant no. 2015152)Strategic Priority Research Program of the Chinese Academy of Sciences Chinese Academy of Sciences (Grant nos. XDA09030103 and XDA09040203)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT)"Double-First Class" Discipline for Materials Science & Engineering
文摘MXene has shown distinctive advantages as anode materials of lithium-ion batteries. However, local surface chemistry, which was confirmed that can block ion transfer and limit redox reaction, has a significant effect on electrochemical performance. Herein, annealing MXene under hydrogen was employed for removing-F and turning-OH to-O terminations. We demonstrate that it improves the kinetics of Li-ion transport between the electrolyte and electrode. As a result, a lower interfacial charge transfer impedance was obtained. The electrochemical measurement exhibited that a nearly 2-fold increase of specific capacity was achieved for the annealed MXene.
基金supported by the National Natural Science Foundation of China (Nos. 21978110 and 51772126)the Natural Science Foundation of Beijing (No. L182062)+8 种基金the Organization Department of Beijing Talents Project (2018000021223ZK21)the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No. 2014QJ02)the Jilin Province Science and Technology Department Program (Nos. 20200201187JC, 20190201309JC, and 20190101009JH)the ‘‘13th five-year” Science and Technology Project of Jilin Provincial Education Department (No. JJKH20200407KJ)the Jilin Province Development and Reform Commission Program (Nos. 2020C026-3 and 2019C042-1)the Jilin Province Fund for Talent Development Program (No. [2019] 874)the supports from Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Waterloothe Waterloo Institute for Nanotechnology。
文摘The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced by the graphitic carbon nitride/carbon nanotube(g-C_3 N_4/CNT) composite toward inhibited shuttling behavior and improved battery performance.The obtained g-C_3 N_4 delivers a unique spongelike architecture with massive ion transfer pathways and fully exposed active interfaces,while the abundant C-N heteroatomic structures impose strong chemical immobilization toward lithium polysulfides.Combined with the highly conductive agent,the g-C_3 N_4/CNT reinforced separator is endowed with great capability of confining and reutilizing the active sulfur within the cathode,thus contributing to an efficient and stable sulfur electrochemistry.Benefiting from these synergistic attributes,Li-S cells based on g-C_3 N_4/CNT separator exhibit an excellent cyclability with a minimum decay rate of 0.03% per cycle over 500 cycles and decent rate capability up to 2 C.Moreover,a high areal capacity of 7.69 mAh cm^(-2)can be achieved under a raised sulfur loading up to 10.1 mg cm^(-2).demonstrating a facile and efficient pathway toward superior Li-S batteries.
基金financial support provided by the National Natural Science Foundation of China(No.51932005)Liao Ning Revitalization Talents Program(XLYC1807175)+4 种基金the Joint Research Fund Liaoning Shenyang National Laboratory for Materials Science(SYNL)(20180510047)the Research Fund of SYNL(L2019F38)the Youth Innovation Promotion Association CAS(2015152)the Program for the Development of Science and Technology of Jilin Province(No.20190201309JC)the Project of Development and Reform Commission of Jilin Province(No.2019C042-1)。
文摘Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Strategic Program of Chinese Academy of Sciences(Grant No.XDB10030400)。
文摘The three-dimensional(3D)pore structures and permeability of shale are critical for forecasting gas production capacity and guiding pressure differential control in practical reservoir extraction.However,few investigations have analyzed the effects of microscopic organic matter(OM)morphology and 3D pore nanostructures on the stress sensitivity,which are precisely the most unique and controlling factors of reservoir quality in shales.In this study,ultra-high nanoscale-resolution imaging experiments,i.e.focused ion beam-scanning electron microscopy(FIB-SEMs),were conducted on two organic-rich shale samples from Longmaxi and Wufeng Formations in northern Guizhou Depression,China.Pore morphology,porosity of 3D pore nanostructures,pore size distribution,and connectivity of the six selected regions of interest(including clump-shaped OMs,interstitial OMs,framboidal pyrite,and microfractures)were qualitatively and quantitatively characterized.Pulse decay permeability(PDP)measurement was used to investigate the variation patterns of stress-dependent permeability and stress sensitivity of shales under different confining pressures and pore pressures,and the results were then used to calculate the Biot coefficients for the two shale formations.The results showed that the samples have high OM porosity and 85%of the OM pores have the radius of less than 40 nm.The OM morphology and pore structure characteristics of the Longmaxi and Wufeng Formations were distinctly different.In particular,the OM in the Wufeng Formation samples developed some OM pores with radius larger than500 nm,which significantly improved the connectivity.The macroscopic permeability strongly depends on the permeability of OM pores.The stress sensitivity of permeability of Wufeng Formation was significantly lower than that of Longmaxi Formation,due to the differences in OM morphology and pore structures.The Biot coefficients of 0.729 and 0.697 were obtained for the Longmaxi and Wufeng Formations,respectively.