In this paper, firstly, we construct the regional industrial sustainable development indicator system which are consist with resource, environment, technology and industrial economy efficiency levels and 16 indicators...In this paper, firstly, we construct the regional industrial sustainable development indicator system which are consist with resource, environment, technology and industrial economy efficiency levels and 16 indicators from the perspective of “two-oriented society”;Secondly, using the method of AHP to determine the weight of each indicator and evaluate the ability of industrial sustainable development of 30 regions in China;Finally, according to the results, we used the method of cluster analysis to put the regions into classification and then author put forward certain suggestions to improve the ability of industrial sustainable development of each region.展开更多
Ag2O has attracted much recent attention,because of its high photocatalytic activity in the ultraviolet(UV)‐visible region.However,there have been few reports on the near‐infrared(NIR)photocatalytic activity of Ag2O...Ag2O has attracted much recent attention,because of its high photocatalytic activity in the ultraviolet(UV)‐visible region.However,there have been few reports on the near‐infrared(NIR)photocatalytic activity of Ag2O.This paper reports the high NIR photocatalytic activity of Ag2O nanoparticles.Ag2O is unsuitable for application in full‐solar‐spectrum photocatalysis,because it is unstable under UV irradiation.A surface sulfurization process was carried out to address this issue.Specifically,a layer of Ag2S2O7nanoparticles was grown on the surface of the Ag2O nanoparticles,to improve the stability of the Ag2O photocatalyst and enhance its photocatalytic activity in the UV,visible and NIR regions.The Ag2O/Ag2S2O7heterostructure is a stable and efficient full‐solar‐spectrum photocatalyst.It has potential application in the photodegradation of organic pollutants,and more generally in environmental engineering where full utilization of the solar spectrum is required.展开更多
The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed t...The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed tomography(CT)play a vital role in the diagnosis,detection of complications,and prognostication of COVID-19.Additionally,magnetic resonance imaging(MRI),especially multi-nuclei MRI,is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging,which has also been used to evaluate COVID-19-related organ injuries in previous studies.Herein,we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1 H MRI techniques and their applications for assessing injuries in lungs,brain,and heart.Moreover,the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.展开更多
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury.Label retaining cells(LRCs)expressing SRY-box transcription factor 9(SOX9)prom...The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury.Label retaining cells(LRCs)expressing SRY-box transcription factor 9(SOX9)promote epithelial repair by replenishing LGR5 t intestinal stem cells(ISCs).While,LRCs are also considered precursor cells for enteroendocrine cells(EECs)which exacerbate mucosal damage in inflammatory bowel disease(IBD).The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear.In this study,we investigated the effects of a natural anthraquinone called aloe emodin(derived from the Chinese herb rhubarb)on mucosal healing in IBD models.Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9t LRCs,thereby promoting mucosal healing.Furthermore,we discovered that aloe emodin acted as an antagonist of free fatty acid receptors(FFAR1),suppressing the FFAR1-mediated Gbg/serine/threonine-protein kinase(AKT)pathway and promoting the translocation of forkhead box protein O1(FOXO1)into the nucleus,ultimately resulting in the intervention of differentiation fate.These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.展开更多
Bacteria can cause numerous infectious diseases and has been a major threat to human humans.Although antibiotics have partially succeeded in treating bacteria,owing to antibiotic abuse,the emergence of multidrug-resis...Bacteria can cause numerous infectious diseases and has been a major threat to human humans.Although antibiotics have partially succeeded in treating bacteria,owing to antibiotic abuse,the emergence of multidrug-resistant(MDR)bacteria has drastically diminished their potency.Since the invention of laser,the combination of light and photosensitizers,photodynamic therapy(PDT),has become an effective noninvasive treatment along with photothermal therapy(PTT),in which heat is generated by nonradiative relaxation.Antimicrobial PDT and PTT are emerging as effective treatments for bacterial infection,particularly against MDR bacteria.This mini review covers the recent progresses in PDT and PTT for bacterial treatment.展开更多
Most lakes have undergone significant changes on the Tibetan Plateau in recent decades,affecting water resources on the Tibetan Plateau and its surrounding areas.In this paper,we investigated the variations of 25 lake...Most lakes have undergone significant changes on the Tibetan Plateau in recent decades,affecting water resources on the Tibetan Plateau and its surrounding areas.In this paper,we investigated the variations of 25 lakes in five sub-regions on the Tibetan Plateau from 1972 to 2019 based on SRTM DEM data and Landsat imagery.We used a method to derive lake-levels based on DEM and lake boundaries delineated from Landsat imagery,and then calculated the changes in lake area,level,and volume in 1972 to 2019.We also analyzed the potential impacts of temperature,precipitation,glacial and permafrost melting in lake changes during this period.The results show that the lakes tended to shrink until 2010 in southern and western plateau,after which they began to expand gradually but the overall trend is still shrinking.Limited meltwater from glaciers and permafrost and low precipitation are the main reasons for their shrinkage.The lakes in the central plateau,northwest plateau and northeast plateau tend to expand overall.The reason for the expansion of the lakes is not only precipitation but also the melting of glaciers and permafrost.Overall,the lake changes have gone through 3 phases,namely a slight decrease during 1972-2000,a rapid increase during 2000-2010,and a slowdown in the last decade(2010-2019).Multiple factors such as temperature,precipitation,the state of glaciers and permafrost have contributed to the changes in the lake.展开更多
Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-c...Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-containing amino acids,DNA,RNA,and other biomolecules damaging to human health.Thus,developing a novel tool for monitoring and imaging of Pd(0)in vivo is very urgent.In the work,based on a intramolecular charge transfer(ICT)mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0).In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0)in 30 min in the aqueous solution with a detection limit of 16 nmol/L.It also showed the outstanding selectivity and antijamming performance.More importantly,NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0)in living cells and mice.展开更多
Increasingly infectious diseases from microbial pathogens(including bacteria and fungi)threaten human health:a situation that has aroused public health concern around the world.Unfortunately,broad-spectrum antimicrobi...Increasingly infectious diseases from microbial pathogens(including bacteria and fungi)threaten human health:a situation that has aroused public health concern around the world.Unfortunately,broad-spectrum antimicrobial agents for treatment resistance pathogens and molecular research on their antimicrobial mechanisms are still scarce.Thus,the development of smart agents against microbial infection for surmounting the above dilemmas is an urgent task.In this contribution,we have tactfully designed a family of flexible aggregation-induced emission luminogens(AIEgens)with various alkyl chain lengths and successfully optimized a cationic AIEgen TPA-S-C6-NMe_(3)^(+)based on the molecular relay strategy for killing both bacteria and fungi in vitro with desired results under white light irradiation,superior to traditional commercial photosensitizers including methylene blue,chlorin e6,and protoporphyrin IX.The cationic AIEgen TPA-S-C6-NMe_(3)^(+)was bound to microbial pathogens via electrostatic and hydrophobic forces and exerted antimicrobial efficacy due to the synergistic effect of alkyl chain length,reactive oxygen species(ROS)generation capability,and two positive charges.Remarkably,AIEgen TPA-S-C6-NMe_(3)^(+)also exhibited a striking antimicrobial activity in vivo,and promoted the generation of new blood vessels and fibroblasts in bacteria-infected tissues,which was beneficial for wound healing in mice.Overall,we expect that our work could provide a powerful tool against microbial pathogens to avoid infections and to promote tissues regeneration in clinical practice.展开更多
Primula chungensis is a species with considerable floral and mating-system variation,including distylous(outcrossing),homostylous(selfing) and mixed populations that contain both outcrossing and selfing forms.We isola...Primula chungensis is a species with considerable floral and mating-system variation,including distylous(outcrossing),homostylous(selfing) and mixed populations that contain both outcrossing and selfing forms.We isolated 24 microsatellite markers from P.chungensis using Illumina Mi Seq sequencing.Polymorphism and genetic diversity were then measured based on a sample of 24 individuals from a natural population in southern Tibet.All loci were polymorphic with the number of alleles per locus ranging from 2 to 4.The observed and expected heterozygosity ranged from 0 to 1 and 0.219 to 0.708,respectively.The microsatellite markers we have identified will serve as valuable tools for the investigation of the population genetic structure and phylogeography of P.chungensis and will inform models of the evolutionary history of mating systems in the species.展开更多
Activity-based approaches for designing AIEgens possess prominent advantages including high selectivity,sensitivity,and signal-to-noise ratio,and they have received more attention in recent years.Excellent activatable...Activity-based approaches for designing AIEgens possess prominent advantages including high selectivity,sensitivity,and signal-to-noise ratio,and they have received more attention in recent years.Excellent activatable AIE probes have been reported for detecting toxic substances,imaging intracellular active molecules/biomolecules,as well as monitoring the activity of overexpressed enzymes in cancers.Moreover,the majority of activatable theranostic AIEgens can be specifically triggered in cancer cells and can kill these cells under light irradiation,while they have no distinct effect on normal cells,demonstrating satisfactory therapeutic selectivity that is superior to that of traditional chemotherapy.Thus,in this review,we systematically summarized the development of activatable AIE bioprobes in recent years from molecular design principles to biological applications.The challenges of activatable AIE probes and the corresponding solutions are described.We hope that the information provided in this review will facilitate the design of more activatable AIE probes to promote practical application of corresponding AIEgens.展开更多
Owing to their high surface area,stable structure and easy fabrication,composite nanomaterials with encapsulation structures have attracted considerable research interest as sensing materials to detect volatile organi...Owing to their high surface area,stable structure and easy fabrication,composite nanomaterials with encapsulation structures have attracted considerable research interest as sensing materials to detect volatile organic compounds.Herein,a hydrothermal route is designed to prepare foam shapedα-MoO_(3)@SnS_(2)nanosheets that exhibit excellent sensing performance for triethylamine(TEA).The developed sensor,based onα-MoO_(3)@SnS_(2)nanosheets,displays a high response of 114.9 for 100 ppm TEA at a low working temperature of 175℃with sensitivity higher than many other reported sensors.In addition,the device shows a wide concentration detection range(from 500 ppb to 500 ppm),good stability after exposure to air for 80 days,and excellent selectivity.The superior sensing characteristics of the developed sensor are attributed to the high crystallinity ofα-MoO_(3)/SnS_(2),excessive and accessible active sites provided by the good permeability of porous SnS_(2)shells,and the excellent conductivity of the encapsulation heterojunction structure.Thus,the foam shapedα-MoO_(3)@SnS_(2)nanosheets presented herein have promising practical applications in TEA gas sensing devices.展开更多
Chemotherapy is one of the commonly used methods to treat various types of cancers in clinic by virtue of its high efficiency and universality. However, strong side effects and low concentration of conventional drugs ...Chemotherapy is one of the commonly used methods to treat various types of cancers in clinic by virtue of its high efficiency and universality. However, strong side effects and low concentration of conventional drugs at the tumor site have always been important factors that plague the chemotherapy effects of patients, further precluding their practical applications. Thereof, to solve the above dilemma, by integration of anticancer drug(nitrogen mustard, NM) into an NIR fluorophore(a dicyanoisophorone derivative), an intelligent prodrug NIR-NM was developed via molecular engineering strategy. Prodrug NIR-NM stimulated in hypoxia condition exhibits significantly higher toxicity to cancer cells than normal cells, essentially reducing the collateral damage to healthy cells and tissues of nitrogen mustard. More importantly, the nanoparticle prodrug FA-lip@NIR-NM showed the advantages of the high accumulation of drug at tumor site and long-circulation capacity in vivo, which endowed it the ability to track the release of the active chemotherapeutic drug and further treat solid tumors.展开更多
Novel interactions between introduced oaks and their natural enemies across different continents provide an opportunity to test the enemy release hypothesis(ERH)at local and global scales.Based on the ERH,we assessed ...Novel interactions between introduced oaks and their natural enemies across different continents provide an opportunity to test the enemy release hypothesis(ERH)at local and global scales.Based on the ERH,we assessed the impacts of native seed-feeding insects on introduced and native oaks within and among continents.We combined a common-garden experiment in China and biogeographic literature surveys to measure seed predation by insects and the proportion of acorn embryos surviving after insect infestation among 4 oak species with different geographical origins:Quercus mongolica origin from China,Q.robur and Q.petraea from Europe,and Q.rubra from North America.Mostly supporting the ERH,oaks in introduced continents escaped seed predation compared to those in native continents and compared to other native oaks in introduced continents.Common-garden comparisons showed that total acorn infestation rate of introduced Q.rubra(section Lobatae)was considerably lower than that of native oaks(section Quercus)in China and Europe,likely because of the differences in seed traits associated with different oak sections.Literature surveys showed that seed predation of introduced oaks was lower in the introduced continent than in the native continent.Embryo survival was higher in introduced Q.rubra than native oaks in China and Poland.However,insect seed predation of recently introduced Q.rubra in China was similar to that in Europe,which is not consistent with the ERH.Our results suggest that reduced acorn attack by native insects and higher embryo survival after acorn damage could increase the establishment success or invasion risk of introduced oaks in non-native continents.展开更多
Hillslope rill/interrill erosion has been investigated from the perspective of runoff transport of sediment.Recent advances in terrestrial laser scanning can provide high-resolution elevation data up to centimeter lev...Hillslope rill/interrill erosion has been investigated from the perspective of runoff transport of sediment.Recent advances in terrestrial laser scanning can provide high-resolution elevation data up to centimeter levels,and temporal digital elevation models(DEMs)enabled the detection and quantification of sediment redistribution.Erosion and deposition are spatially heterogeneous across hillslopes,and the choice of resolution is critical when using a DEM to study the spatial pattern of the processes.This study investigates the influence of grid size on the sediment change calculation and rill network delineation based on two surveys using a terrestrial laser scanner on a hillslope with well-developed rills in 2014 and 2015.Temporal DEMs were used to quantify elevation changes and used to delineate rill networks.We produced DEM pairs of incremental grid sizes(1-cm,2-cm,5-cm,8-cm,10-cm,15-cm,20-cm,and 30-cm)for DEM difference and rill network delineation.We used the 1-cm DEM as the reference to compare the results produced from other DEMs.Our results suggest that erosion mainly occurs on the rill sidewalls,and deposition on the rill floors,with patches of erosion/deposition within the interrill areas.Both the area and volume of detectable change decrease as the grid size increases,while the area and volume of erosion are less sensitive compared to those of deposition.The total length and number of rills decrease with the increased grid size,whereas the average length of rills increases.The mean offset between delineated rill network and the reference increases with larger grid sizes.In contrast to the erosion and deposition detected within rills,minor changes are detected on the interrill areas,indicating that either no topographic changes occurred or the changes were too small to be detected on the interill areas by our finest 1-cm DEMs.We recommend to use the finest possible grid size that can be achieved for future studies.展开更多
Electrochemiluminescence(ECL)has attracted considerable interest for many applications such as microscopy,(bio)analysis,light-emitting materials or devices.In this work,we report the fabrication and characterization o...Electrochemiluminescence(ECL)has attracted considerable interest for many applications such as microscopy,(bio)analysis,light-emitting materials or devices.In this work,we report the fabrication and characterization of ECL-active hydrogel films with tunable thickness.The redox films were prepared by electrochemically-assisted radical polymerization by potential cycling of a PBS solution containing the monomer N-isopropylacrylamide,the initiator potassium persulfate,the cross-linker N,N′-methylenebis(acrylamide)and the Ru(bpy)3 monomer.The deposits were easily prepared in a rapid and well-controlled one-step procedure.The resulting homogeneous films are composed of a poly(N-isopropylacrylamide)(pNIPAM)matrix,which incorporates covalently[Ru(bpy)_(3)]^(2+)centers.The thickness and the number of ECL-active sites is tuned by control-ling the number of voltammetric scans.The deposited pNIPAM films are permeable to water-soluble chemicals such as the coreactant tri-n-propylamine(TPrA).The voltammetric characterization shows a continuous increase of the number of redox-active sites.Results indicate that ECL signals are proportional to the number of electrodeposited[Ru(bpy)_(3)]^(2+)centers.Such approach combining ECL and stimuli-responsive hydrogels open exciting prospects for developing new(bio)sensing materials.展开更多
In this study,we consider the problem of node ranking in a random network.A Markov chain is defined for the network,and its transition probability matrix is unknown but can be learned by sampling random interactions a...In this study,we consider the problem of node ranking in a random network.A Markov chain is defined for the network,and its transition probability matrix is unknown but can be learned by sampling random interactions among nodes.Our objective is to decompose the Markov chain into several ergodic classes and select the best node in each ergodic class.We propose a dynamic sampling procedure,which gives a probability guarantee on correct decomposition and maximizes a weighted probability of correct selection of the best node in each ergodic class.Numerical experiment results demonstrate the efficiency of the proposed sampling procedure.展开更多
Dear Editor,Chronic respiratory diseases,including chronic obstructive pulmonary disease(COPD),interstitial lung disease(ILD),and asthma,areamong the leading causes ofmorbidity andmortalityworldwide.Recent estimates i...Dear Editor,Chronic respiratory diseases,including chronic obstructive pulmonary disease(COPD),interstitial lung disease(ILD),and asthma,areamong the leading causes ofmorbidity andmortalityworldwide.Recent estimates indicate that chronic respiratory diseases affect over 540million people in the world in 2017 and account for an estimated 3.9 million deaths.展开更多
文摘In this paper, firstly, we construct the regional industrial sustainable development indicator system which are consist with resource, environment, technology and industrial economy efficiency levels and 16 indicators from the perspective of “two-oriented society”;Secondly, using the method of AHP to determine the weight of each indicator and evaluate the ability of industrial sustainable development of 30 regions in China;Finally, according to the results, we used the method of cluster analysis to put the regions into classification and then author put forward certain suggestions to improve the ability of industrial sustainable development of each region.
基金supported by the National Natural Science Foundation of China(51372142)the Innovation Research Group(51321091)the Program of Introducing Talents of Discipline to Universities in China(111 program,b06015)~~
文摘Ag2O has attracted much recent attention,because of its high photocatalytic activity in the ultraviolet(UV)‐visible region.However,there have been few reports on the near‐infrared(NIR)photocatalytic activity of Ag2O.This paper reports the high NIR photocatalytic activity of Ag2O nanoparticles.Ag2O is unsuitable for application in full‐solar‐spectrum photocatalysis,because it is unstable under UV irradiation.A surface sulfurization process was carried out to address this issue.Specifically,a layer of Ag2S2O7nanoparticles was grown on the surface of the Ag2O nanoparticles,to improve the stability of the Ag2O photocatalyst and enhance its photocatalytic activity in the UV,visible and NIR regions.The Ag2O/Ag2S2O7heterostructure is a stable and efficient full‐solar‐spectrum photocatalyst.It has potential application in the photodegradation of organic pollutants,and more generally in environmental engineering where full utilization of the solar spectrum is required.
基金This work is supported by National key Research and Development Project of China(grant no.2018YFA0704000)National Natural Science Foundation of China(grant no.91859206,81625011,21921004)+3 种基金Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant no.GJJSTD20200002,YJKYYQ20200067)Key Research Program of Frontier Sciences,CAS(grant no.ZDBS-LY-JSC004)Haidong Li acknowledges the support from Youth Innovation Promotion Association,CAS(grant no.2020330)Xin Zhou acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.
文摘The ongoing pandemic of coronavirus disease 2019(COVID-19)has been a great burden for the healthcare system in many countries because of its high transmissibility,severity,and fatality.Chest radiography and computed tomography(CT)play a vital role in the diagnosis,detection of complications,and prognostication of COVID-19.Additionally,magnetic resonance imaging(MRI),especially multi-nuclei MRI,is another important imaging technique for disease diagnosis because of its good soft tissue contrast and the ability to conduct structural and functional imaging,which has also been used to evaluate COVID-19-related organ injuries in previous studies.Herein,we briefly reviewed the recent research on multi-nuclei MRI for evaluating injuries caused by COVID-19 and the clinical 1 H MRI techniques and their applications for assessing injuries in lungs,brain,and heart.Moreover,the emerging hyperpolarized 129Xe gas MRI and its applications in the evaluation of pulmonary structures and functional abnormalities caused by COVID-19 were also reviewed.
基金National Natural Science Foundation of China(Nos.82030113,82130108,and 82204717)China Postdoctoral Science Foundation(Nos.BX20220069 and 2021M700864).
文摘The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury.Label retaining cells(LRCs)expressing SRY-box transcription factor 9(SOX9)promote epithelial repair by replenishing LGR5 t intestinal stem cells(ISCs).While,LRCs are also considered precursor cells for enteroendocrine cells(EECs)which exacerbate mucosal damage in inflammatory bowel disease(IBD).The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear.In this study,we investigated the effects of a natural anthraquinone called aloe emodin(derived from the Chinese herb rhubarb)on mucosal healing in IBD models.Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9t LRCs,thereby promoting mucosal healing.Furthermore,we discovered that aloe emodin acted as an antagonist of free fatty acid receptors(FFAR1),suppressing the FFAR1-mediated Gbg/serine/threonine-protein kinase(AKT)pathway and promoting the translocation of forkhead box protein O1(FOXO1)into the nucleus,ultimately resulting in the intervention of differentiation fate.These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2022R1A2C3005420).
文摘Bacteria can cause numerous infectious diseases and has been a major threat to human humans.Although antibiotics have partially succeeded in treating bacteria,owing to antibiotic abuse,the emergence of multidrug-resistant(MDR)bacteria has drastically diminished their potency.Since the invention of laser,the combination of light and photosensitizers,photodynamic therapy(PDT),has become an effective noninvasive treatment along with photothermal therapy(PTT),in which heat is generated by nonradiative relaxation.Antimicrobial PDT and PTT are emerging as effective treatments for bacterial infection,particularly against MDR bacteria.This mini review covers the recent progresses in PDT and PTT for bacterial treatment.
基金This work is supported by the National Key Research and Development Program of China[grant number 2018YFD1100104]the National Key Research and Development Program of China[grant number 2020YFC1521900].
文摘Most lakes have undergone significant changes on the Tibetan Plateau in recent decades,affecting water resources on the Tibetan Plateau and its surrounding areas.In this paper,we investigated the variations of 25 lakes in five sub-regions on the Tibetan Plateau from 1972 to 2019 based on SRTM DEM data and Landsat imagery.We used a method to derive lake-levels based on DEM and lake boundaries delineated from Landsat imagery,and then calculated the changes in lake area,level,and volume in 1972 to 2019.We also analyzed the potential impacts of temperature,precipitation,glacial and permafrost melting in lake changes during this period.The results show that the lakes tended to shrink until 2010 in southern and western plateau,after which they began to expand gradually but the overall trend is still shrinking.Limited meltwater from glaciers and permafrost and low precipitation are the main reasons for their shrinkage.The lakes in the central plateau,northwest plateau and northeast plateau tend to expand overall.The reason for the expansion of the lakes is not only precipitation but also the melting of glaciers and permafrost.Overall,the lake changes have gone through 3 phases,namely a slight decrease during 1972-2000,a rapid increase during 2000-2010,and a slowdown in the last decade(2010-2019).Multiple factors such as temperature,precipitation,the state of glaciers and permafrost have contributed to the changes in the lake.
基金the National Science Foundation of China(Nos.21421005,21576037 and U1608222)。
文摘Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-containing amino acids,DNA,RNA,and other biomolecules damaging to human health.Thus,developing a novel tool for monitoring and imaging of Pd(0)in vivo is very urgent.In the work,based on a intramolecular charge transfer(ICT)mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0).In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0)in 30 min in the aqueous solution with a detection limit of 16 nmol/L.It also showed the outstanding selectivity and antijamming performance.More importantly,NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0)in living cells and mice.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIP)(no.2012R1A3A2048814 for J.Y.)the National Natural Science Foundation of China(no.21878041 and 22078050 for J.W.).
文摘Increasingly infectious diseases from microbial pathogens(including bacteria and fungi)threaten human health:a situation that has aroused public health concern around the world.Unfortunately,broad-spectrum antimicrobial agents for treatment resistance pathogens and molecular research on their antimicrobial mechanisms are still scarce.Thus,the development of smart agents against microbial infection for surmounting the above dilemmas is an urgent task.In this contribution,we have tactfully designed a family of flexible aggregation-induced emission luminogens(AIEgens)with various alkyl chain lengths and successfully optimized a cationic AIEgen TPA-S-C6-NMe_(3)^(+)based on the molecular relay strategy for killing both bacteria and fungi in vitro with desired results under white light irradiation,superior to traditional commercial photosensitizers including methylene blue,chlorin e6,and protoporphyrin IX.The cationic AIEgen TPA-S-C6-NMe_(3)^(+)was bound to microbial pathogens via electrostatic and hydrophobic forces and exerted antimicrobial efficacy due to the synergistic effect of alkyl chain length,reactive oxygen species(ROS)generation capability,and two positive charges.Remarkably,AIEgen TPA-S-C6-NMe_(3)^(+)also exhibited a striking antimicrobial activity in vivo,and promoted the generation of new blood vessels and fibroblasts in bacteria-infected tissues,which was beneficial for wound healing in mice.Overall,we expect that our work could provide a powerful tool against microbial pathogens to avoid infections and to promote tissues regeneration in clinical practice.
基金funded by the National Key Basic Research Program of China(2014CB954100)the Key Research Program of the Chinese Academic of Sciences(KJZD-EW-L07)+1 种基金the National Natural Science Foundation of China(31200289,31570384)the Natural Science Foundation of Yunnan Province(2012FB182)
文摘Primula chungensis is a species with considerable floral and mating-system variation,including distylous(outcrossing),homostylous(selfing) and mixed populations that contain both outcrossing and selfing forms.We isolated 24 microsatellite markers from P.chungensis using Illumina Mi Seq sequencing.Polymorphism and genetic diversity were then measured based on a sample of 24 individuals from a natural population in southern Tibet.All loci were polymorphic with the number of alleles per locus ranging from 2 to 4.The observed and expected heterozygosity ranged from 0 to 1 and 0.219 to 0.708,respectively.The microsatellite markers we have identified will serve as valuable tools for the investigation of the population genetic structure and phylogeography of P.chungensis and will inform models of the evolutionary history of mating systems in the species.
基金National Research Foundation of Korea,Grant/Award Number:2012R1A3A2048814National Natural Science Foundation of China,Grant/Award Number:22090011。
文摘Activity-based approaches for designing AIEgens possess prominent advantages including high selectivity,sensitivity,and signal-to-noise ratio,and they have received more attention in recent years.Excellent activatable AIE probes have been reported for detecting toxic substances,imaging intracellular active molecules/biomolecules,as well as monitoring the activity of overexpressed enzymes in cancers.Moreover,the majority of activatable theranostic AIEgens can be specifically triggered in cancer cells and can kill these cells under light irradiation,while they have no distinct effect on normal cells,demonstrating satisfactory therapeutic selectivity that is superior to that of traditional chemotherapy.Thus,in this review,we systematically summarized the development of activatable AIE bioprobes in recent years from molecular design principles to biological applications.The challenges of activatable AIE probes and the corresponding solutions are described.We hope that the information provided in this review will facilitate the design of more activatable AIE probes to promote practical application of corresponding AIEgens.
基金financially supported by the National Natural Science Foundation of China(No.51227804)funded by the Postdoctoral Scientific Research Foundation of Qingdao,National College Students Innovation and Entrepreneurship Training Program of China(No.G201911065028)+3 种基金College Students Innovation and Entrepreneurship Training Program of Qingdao University(Nos.X201911065058,X202011065056)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)。
文摘Owing to their high surface area,stable structure and easy fabrication,composite nanomaterials with encapsulation structures have attracted considerable research interest as sensing materials to detect volatile organic compounds.Herein,a hydrothermal route is designed to prepare foam shapedα-MoO_(3)@SnS_(2)nanosheets that exhibit excellent sensing performance for triethylamine(TEA).The developed sensor,based onα-MoO_(3)@SnS_(2)nanosheets,displays a high response of 114.9 for 100 ppm TEA at a low working temperature of 175℃with sensitivity higher than many other reported sensors.In addition,the device shows a wide concentration detection range(from 500 ppb to 500 ppm),good stability after exposure to air for 80 days,and excellent selectivity.The superior sensing characteristics of the developed sensor are attributed to the high crystallinity ofα-MoO_(3)/SnS_(2),excessive and accessible active sites provided by the good permeability of porous SnS_(2)shells,and the excellent conductivity of the encapsulation heterojunction structure.Thus,the foam shapedα-MoO_(3)@SnS_(2)nanosheets presented herein have promising practical applications in TEA gas sensing devices.
基金supported by the National Creative Research Initiative programs of the National Research Foundation of Korea(NRF),the Korean Government(MSIP)(2012R1A3A2048814)the National Natural Science Foundation of China(21421005,21808028)the Natural Science Foundation of Liaoning United Fund(U1608222,U1908202)。
文摘Chemotherapy is one of the commonly used methods to treat various types of cancers in clinic by virtue of its high efficiency and universality. However, strong side effects and low concentration of conventional drugs at the tumor site have always been important factors that plague the chemotherapy effects of patients, further precluding their practical applications. Thereof, to solve the above dilemma, by integration of anticancer drug(nitrogen mustard, NM) into an NIR fluorophore(a dicyanoisophorone derivative), an intelligent prodrug NIR-NM was developed via molecular engineering strategy. Prodrug NIR-NM stimulated in hypoxia condition exhibits significantly higher toxicity to cancer cells than normal cells, essentially reducing the collateral damage to healthy cells and tissues of nitrogen mustard. More importantly, the nanoparticle prodrug FA-lip@NIR-NM showed the advantages of the high accumulation of drug at tumor site and long-circulation capacity in vivo, which endowed it the ability to track the release of the active chemotherapeutic drug and further treat solid tumors.
基金This research was supported by the National Natural Science Foundation of China(31770565)the National Key Research and Development Program of China(2017YFC0503802)the State Key Laboratory of Integrated Management of Pest Insects and Rodents(IPM1911).
文摘Novel interactions between introduced oaks and their natural enemies across different continents provide an opportunity to test the enemy release hypothesis(ERH)at local and global scales.Based on the ERH,we assessed the impacts of native seed-feeding insects on introduced and native oaks within and among continents.We combined a common-garden experiment in China and biogeographic literature surveys to measure seed predation by insects and the proportion of acorn embryos surviving after insect infestation among 4 oak species with different geographical origins:Quercus mongolica origin from China,Q.robur and Q.petraea from Europe,and Q.rubra from North America.Mostly supporting the ERH,oaks in introduced continents escaped seed predation compared to those in native continents and compared to other native oaks in introduced continents.Common-garden comparisons showed that total acorn infestation rate of introduced Q.rubra(section Lobatae)was considerably lower than that of native oaks(section Quercus)in China and Europe,likely because of the differences in seed traits associated with different oak sections.Literature surveys showed that seed predation of introduced oaks was lower in the introduced continent than in the native continent.Embryo survival was higher in introduced Q.rubra than native oaks in China and Poland.However,insect seed predation of recently introduced Q.rubra in China was similar to that in Europe,which is not consistent with the ERH.Our results suggest that reduced acorn attack by native insects and higher embryo survival after acorn damage could increase the establishment success or invasion risk of introduced oaks in non-native continents.
文摘Hillslope rill/interrill erosion has been investigated from the perspective of runoff transport of sediment.Recent advances in terrestrial laser scanning can provide high-resolution elevation data up to centimeter levels,and temporal digital elevation models(DEMs)enabled the detection and quantification of sediment redistribution.Erosion and deposition are spatially heterogeneous across hillslopes,and the choice of resolution is critical when using a DEM to study the spatial pattern of the processes.This study investigates the influence of grid size on the sediment change calculation and rill network delineation based on two surveys using a terrestrial laser scanner on a hillslope with well-developed rills in 2014 and 2015.Temporal DEMs were used to quantify elevation changes and used to delineate rill networks.We produced DEM pairs of incremental grid sizes(1-cm,2-cm,5-cm,8-cm,10-cm,15-cm,20-cm,and 30-cm)for DEM difference and rill network delineation.We used the 1-cm DEM as the reference to compare the results produced from other DEMs.Our results suggest that erosion mainly occurs on the rill sidewalls,and deposition on the rill floors,with patches of erosion/deposition within the interrill areas.Both the area and volume of detectable change decrease as the grid size increases,while the area and volume of erosion are less sensitive compared to those of deposition.The total length and number of rills decrease with the increased grid size,whereas the average length of rills increases.The mean offset between delineated rill network and the reference increases with larger grid sizes.In contrast to the erosion and deposition detected within rills,minor changes are detected on the interrill areas,indicating that either no topographic changes occurred or the changes were too small to be detected on the interill areas by our finest 1-cm DEMs.We recommend to use the finest possible grid size that can be achieved for future studies.
基金supported by the Agence Nationale de la Recherche(NEOCASTIP ANR-15-CE09-0015-03)HL acknowledges the Natural Science Foundations of Jiangsu Province(No.BK20180893).
文摘Electrochemiluminescence(ECL)has attracted considerable interest for many applications such as microscopy,(bio)analysis,light-emitting materials or devices.In this work,we report the fabrication and characterization of ECL-active hydrogel films with tunable thickness.The redox films were prepared by electrochemically-assisted radical polymerization by potential cycling of a PBS solution containing the monomer N-isopropylacrylamide,the initiator potassium persulfate,the cross-linker N,N′-methylenebis(acrylamide)and the Ru(bpy)3 monomer.The deposits were easily prepared in a rapid and well-controlled one-step procedure.The resulting homogeneous films are composed of a poly(N-isopropylacrylamide)(pNIPAM)matrix,which incorporates covalently[Ru(bpy)_(3)]^(2+)centers.The thickness and the number of ECL-active sites is tuned by control-ling the number of voltammetric scans.The deposited pNIPAM films are permeable to water-soluble chemicals such as the coreactant tri-n-propylamine(TPrA).The voltammetric characterization shows a continuous increase of the number of redox-active sites.Results indicate that ECL signals are proportional to the number of electrodeposited[Ru(bpy)_(3)]^(2+)centers.Such approach combining ECL and stimuli-responsive hydrogels open exciting prospects for developing new(bio)sensing materials.
基金This work was supported in part by the National Natural Science Foundation of China(Grants No.72022001,92146003,71901003).
文摘In this study,we consider the problem of node ranking in a random network.A Markov chain is defined for the network,and its transition probability matrix is unknown but can be learned by sampling random interactions among nodes.Our objective is to decompose the Markov chain into several ergodic classes and select the best node in each ergodic class.We propose a dynamic sampling procedure,which gives a probability guarantee on correct decomposition and maximizes a weighted probability of correct selection of the best node in each ergodic class.Numerical experiment results demonstrate the efficiency of the proposed sampling procedure.
基金supported by National Key Research and Development Programof China(grant 2022YFC2410000)National Natural Science Foundation of China(grant 82127802,21921004,82372150,81930049,and 82202119)+5 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant XDB0540000,XDC0170000)the Key Research Programof Frontier Sciences,CAS(grant ZDBS-LY-JSC004)Hubei Provincial Key Technology Foundation of China(2021ACA013)Major Program(JD)of Hubei Province(2023BAA021)Hubei Provincial Outstanding Youth Fund(2023AFA112)Haidong Li acknowledges the support from Youth Innovation Promotion Association,CAS(grant 2020330).
文摘Dear Editor,Chronic respiratory diseases,including chronic obstructive pulmonary disease(COPD),interstitial lung disease(ILD),and asthma,areamong the leading causes ofmorbidity andmortalityworldwide.Recent estimates indicate that chronic respiratory diseases affect over 540million people in the world in 2017 and account for an estimated 3.9 million deaths.