Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ...Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.展开更多
Canine coronavirus(CCoV),a member of the genus Alphocoronavirus,is an enveloped,single-stranded positive-sense RNA virus that responsible for gastroenteritis in dogs.In this study,two CCoV isolates were successfully p...Canine coronavirus(CCoV),a member of the genus Alphocoronavirus,is an enveloped,single-stranded positive-sense RNA virus that responsible for gastroenteritis in dogs.In this study,two CCoV isolates were successfully propagated from 53 CCoV-positive clinical specimens by serial passaging in A-72 cells.These two strains,CCoV JS1706 and CCoV JS1712,caused cytopathic effects in A-72 cells.The sizes of virus plaque formed by them differed in early passages.Electron microscopy revealed a large quantity of typical coronavirus particles with 80-120 nm in diameter in cell culture media and cytoplasm of infected cells,in which they appeared as inclusion bodies.RT-PCR analysis of 5 gene indicated that these two isolates were belonged to CCoV lla subtype.Homology of RdRp,S,M and N proteins between the two strains were 100,99.6,99.2 and 100.0%,respectively,whereas they were 99.4-100%,83.1-95.2%,88.5-99.2% and 91.9-99.7%identity compared to CCoV II reference strains.Phylogenetic analysis of RdRp,S,M and N protein showed that they were closely related to CCoV II strains.These two subtype lla isolates will be useful for evaluating the pathogenesis and evolution of CCoV and for developing diagnostic reagents and vaccines.展开更多
Two-dimensional transition metal dichalcogenides(TMDs)are needed in highperformance piezoresistive sensors due to their strong strain-induced bandgap modification and thereby large gauge factors.However,integrating a ...Two-dimensional transition metal dichalcogenides(TMDs)are needed in highperformance piezoresistive sensors due to their strong strain-induced bandgap modification and thereby large gauge factors.However,integrating a conventional high-temperature chemical vapor deposition(CVD)-grown TMD with a flexible substrate necessitates a transfer process that inevitably degrades the sensing properties of the TMDs and increases the overall fabrication complexity.We present a high-performance piezoresistive strain sensor that employs largearea PdSe_(2) films grown directly on polyimide(PI)substrates via plasma-assisted selenization of a sputtered Pd film.The reliable strain transfer from the substrate to the PdSe_(2) film ensures an outstanding strain-sensing capability of the sensor.Specifically,the sensors have a gauge factor of up to315±2.1,a response time under 25 ms,a detection limit of 8×10^(-6),and an exceptional stability of over 104 loadingunloading cycles.By attaching the sensors to the skin surface,we demonstrate their application for measuring physiological parameters in health care monitoring,including motion,voice,and arterial pulse vibration.Furthermore,using the PdSe_(2) film sensor combined with deep learning technology,we achieved intelligent recognition of artery temperature from arterial pulse signals with only a 2%difference between predicted and actual temperatures.The excellent sensing performance,together with the advantages of low-temperature fabrication and simple device structure,make the PdSe_(2) film sensor promising for wearable electronics and health care sensing systems.展开更多
Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which ...Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which lies in the complex reaction process that involves a series of reaction intermediates and proceeds via a cascade reaction.Here,we present a Pt–Cu dual-atom catalyst(Pt/Cu-NG)as an electrocatalyst for sulfur redox reactions.Pt/Cu-NG enabled the rapid conversion of soluble polysulfide intermediates into insoluble Li2S2/Li2S,and consequently,it prevented the accumulation and shuttling of lithium polysulfides,thus outperforming the corresponding single-atom catalysts(SACs)with individual Pt or Cu sites.Operando X-ray absorption spectroscopy and density functional theory calculations revealed that a synergistic effect between the paired Pt and Cu atoms modifies the electronic structure of the Pt site through d-orbital interactions,resulting in an optimal moderate interaction of the metal atom with the different sulfide species.This optimal interaction enhanced charge transfer kinetics and promoted sulfur redox reactions.Our work thus provides important insights on the atomic scale into the synergistic effects operative in dual-atom catalysts and will thus pave the way to electrocatalysts with enhanced efficiency for high-performance Li–S batteries.展开更多
Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in ...Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations dearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current-voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications.展开更多
Exploring two-dimensional(2D)magnetic semiconductors with room-temperature magnetic ordering and electrically controllable spin-polarization is a highly desirable but challenging task for nano-spintronics.Here,through...Exploring two-dimensional(2D)magnetic semiconductors with room-temperature magnetic ordering and electrically controllable spin-polarization is a highly desirable but challenging task for nano-spintronics.Here,through first-principles calculations,we propose to realize such a material by exfoliating the recently synthesized organometallic layered crystal Li0.7[Cr(pyz)_(2)]Cl0.7·0.25(THF)(pyz=pyrazine,THF=tetrahydrofuran).The feasibility of exfoliation is confirmed by the rather low exfoliation energy of 0.27 J m^(−2),even smaller than that of graphite.In exfoliated Cr(pyz)_(2)monolayers,each pyrazine ring grabs one electron from the Cr atom to become a radical anion,and then a strong d-p direct-exchange magnetic interaction emerges between Cr cations and pyrazine radicals,resulting in room-temperature ferrimagnetism with a Curie temperature of 342 K.Moreover,the Cr(pyz)_(2)monolayer is revealed to be an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction.展开更多
基金funding support from the National Natural Science Foundation of China (22125902, 22109150, 22279126, U2032202, and 21975243)the DNL cooperation Fund, CAS (DNL202020)+1 种基金the National Key R&D Program of China (no. 2022YFA1504101)the Anhui Provincial Natural Science Foundation (2108085QB65)
文摘Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.
基金This work was supported by the Open Project Program of Jiangsu Key Laboratory of Zoonosis(No.1604,No.1804)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Canine coronavirus(CCoV),a member of the genus Alphocoronavirus,is an enveloped,single-stranded positive-sense RNA virus that responsible for gastroenteritis in dogs.In this study,two CCoV isolates were successfully propagated from 53 CCoV-positive clinical specimens by serial passaging in A-72 cells.These two strains,CCoV JS1706 and CCoV JS1712,caused cytopathic effects in A-72 cells.The sizes of virus plaque formed by them differed in early passages.Electron microscopy revealed a large quantity of typical coronavirus particles with 80-120 nm in diameter in cell culture media and cytoplasm of infected cells,in which they appeared as inclusion bodies.RT-PCR analysis of 5 gene indicated that these two isolates were belonged to CCoV lla subtype.Homology of RdRp,S,M and N proteins between the two strains were 100,99.6,99.2 and 100.0%,respectively,whereas they were 99.4-100%,83.1-95.2%,88.5-99.2% and 91.9-99.7%identity compared to CCoV II reference strains.Phylogenetic analysis of RdRp,S,M and N protein showed that they were closely related to CCoV II strains.These two subtype lla isolates will be useful for evaluating the pathogenesis and evolution of CCoV and for developing diagnostic reagents and vaccines.
基金supported by the National Natural Science Foundation of China (22073087, 12147105 and 22321001)the National Natural Science Foundation for Distinguished Young Scholars (22225301)+4 种基金Anhui Provincial Natural Science Foundation (2308085QB51)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450101)the Fundamental Research Funds for the Central Universities (20720220007)the support from the Super Computer Centre of University of Science and Technology of ChinaSupercomputing Center of Chinese Academy of Sciences。
基金National Natural Science Foundation of China,Grant/Award Numbers:61975024,62074024Natural Science Foundation of Sichuan Province,Grant/Award Number:2022NSFSC0042Sichuan Science and Technology Program,Grant/Award Numbers:2023NSFSC0365,2023YFH0090。
文摘Two-dimensional transition metal dichalcogenides(TMDs)are needed in highperformance piezoresistive sensors due to their strong strain-induced bandgap modification and thereby large gauge factors.However,integrating a conventional high-temperature chemical vapor deposition(CVD)-grown TMD with a flexible substrate necessitates a transfer process that inevitably degrades the sensing properties of the TMDs and increases the overall fabrication complexity.We present a high-performance piezoresistive strain sensor that employs largearea PdSe_(2) films grown directly on polyimide(PI)substrates via plasma-assisted selenization of a sputtered Pd film.The reliable strain transfer from the substrate to the PdSe_(2) film ensures an outstanding strain-sensing capability of the sensor.Specifically,the sensors have a gauge factor of up to315±2.1,a response time under 25 ms,a detection limit of 8×10^(-6),and an exceptional stability of over 104 loadingunloading cycles.By attaching the sensors to the skin surface,we demonstrate their application for measuring physiological parameters in health care monitoring,including motion,voice,and arterial pulse vibration.Furthermore,using the PdSe_(2) film sensor combined with deep learning technology,we achieved intelligent recognition of artery temperature from arterial pulse signals with only a 2%difference between predicted and actual temperatures.The excellent sensing performance,together with the advantages of low-temperature fabrication and simple device structure,make the PdSe_(2) film sensor promising for wearable electronics and health care sensing systems.
基金This work was supported by the Natural Science Foundation of China(22125902,21975243,U2032202,and U1932201)the National Program for Support of Topnotch Young Professionals,the DNL Cooperation Fund,CAS(DNL202020)+2 种基金the Anhui Science Fund for Distinguished Young Scholars(2208085J15)the National Key R&D Program of China(2022YFA1504101)Users with Excellence Program of Hefei Science Center CAS(2021HSC-UE002).
文摘Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which lies in the complex reaction process that involves a series of reaction intermediates and proceeds via a cascade reaction.Here,we present a Pt–Cu dual-atom catalyst(Pt/Cu-NG)as an electrocatalyst for sulfur redox reactions.Pt/Cu-NG enabled the rapid conversion of soluble polysulfide intermediates into insoluble Li2S2/Li2S,and consequently,it prevented the accumulation and shuttling of lithium polysulfides,thus outperforming the corresponding single-atom catalysts(SACs)with individual Pt or Cu sites.Operando X-ray absorption spectroscopy and density functional theory calculations revealed that a synergistic effect between the paired Pt and Cu atoms modifies the electronic structure of the Pt site through d-orbital interactions,resulting in an optimal moderate interaction of the metal atom with the different sulfide species.This optimal interaction enhanced charge transfer kinetics and promoted sulfur redox reactions.Our work thus provides important insights on the atomic scale into the synergistic effects operative in dual-atom catalysts and will thus pave the way to electrocatalysts with enhanced efficiency for high-performance Li–S batteries.
文摘Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations dearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current-voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications.
基金supported by the National Natural Science Foundation of China(21688102)by the National Key Research&Development Program of China(2016YFA0200604)+2 种基金by Anhui Initiative in Quantum Information Technologies(AHY090400)by the Youth Innovation Promotion Association CAS(2019441)by USTC Research Funds of the Double First-Class Initiative(YD2060002011)。
文摘Exploring two-dimensional(2D)magnetic semiconductors with room-temperature magnetic ordering and electrically controllable spin-polarization is a highly desirable but challenging task for nano-spintronics.Here,through first-principles calculations,we propose to realize such a material by exfoliating the recently synthesized organometallic layered crystal Li0.7[Cr(pyz)_(2)]Cl0.7·0.25(THF)(pyz=pyrazine,THF=tetrahydrofuran).The feasibility of exfoliation is confirmed by the rather low exfoliation energy of 0.27 J m^(−2),even smaller than that of graphite.In exfoliated Cr(pyz)_(2)monolayers,each pyrazine ring grabs one electron from the Cr atom to become a radical anion,and then a strong d-p direct-exchange magnetic interaction emerges between Cr cations and pyrazine radicals,resulting in room-temperature ferrimagnetism with a Curie temperature of 342 K.Moreover,the Cr(pyz)_(2)monolayer is revealed to be an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction.