In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in...In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in UHF RFID systems,and will have an influence on the recovery on the physical layer.To address the problem of recovery with the frequency drift,this paper adopts a radial basis function(RBF)network to separate the collision signals,and decode the signals via FM0 to recovery collided RFID tags.Numerical results show that the method in this paper has better performance of symbol error rate(SER)and separation efficiency compared to conventional methods when frequency drift occurs.展开更多
A deep trench super-junction LDMOS with double charge compensation layer(DC DT SJ LDMOS)is proposed in this paper.Due to the capacitance effect of the deep trench which is known as silicon-insulator-silicon(SIS)capaci...A deep trench super-junction LDMOS with double charge compensation layer(DC DT SJ LDMOS)is proposed in this paper.Due to the capacitance effect of the deep trench which is known as silicon-insulator-silicon(SIS)capacitance,the charge balance in the super-junction region of the conventional deep trench SJ LDMOS(Con.DT SJ LDMOS)device will be broken,resulting in breakdown voltage(BV)of the device drops.DC DT SJ LDMOS solves the SIS capacitance effect by adding a vertical variable doped charge compensation layer and a triangular charge compensation layer inside the Con.DT SJ LDMOS device.Therefore,the drift region reaches an ideal charge balance state again.The electric field is optimized by double charge compensation and gate field plate so that the breakdown voltage of the proposed device is improved sharply,meanwhile the enlarged on-current region reduces its specific on-resistance.The simulation results show that compared with the Con.DT SJ LD-MOS,the BV of the DC DT SJ LDMOS has been increased from 549.5 to 705.5 V,and the R_(on,sp) decreased to 23.7 mΩ·cm^(2).展开更多
Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher iden...Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.展开更多
In this letter,we design and analyze 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier(PA)in 0.18μm CMOS technology.By using two-stage quadruple-stacked topology and feedback technology,the proposed PA...In this letter,we design and analyze 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier(PA)in 0.18μm CMOS technology.By using two-stage quadruple-stacked topology and feedback technology,the proposed PA realizes an ultra-wideband CMOS PA in a small chip area.Wideband impedance matching is achieved with smaller chip dimension.The effects of feedback resistors on the RF performance are also discussed for this stacked-FET PA.The PA shows measured input return loss(<–10.8 dB)and output return loss(<–9.6 dB)in the entire bandwidth.A saturated output power of 22 dBm with maximum 20%power added efficiency(PAE)is also measured with the drain voltage at 5 V.The chip size is 0.44 mm^2 including all pads.展开更多
Interconnect reliability has been regarded as a discipline that must be seriously taken into account from the early design phase of integrated circuit (IC). In order to study the status and trend of the interconnect r...Interconnect reliability has been regarded as a discipline that must be seriously taken into account from the early design phase of integrated circuit (IC). In order to study the status and trend of the interconnect reliability, a comprehensive review of the published literatures is carried out. This can depict the global trend of ICs’ interconnect reliability and help the new entrants to understand the present situation of this area.展开更多
Reconstructing enzymatic active sites presents a significant challenge due to the intricacies involved in achieving enzyme-like scaffold folding and spatial arrangement of essential functional groups.There is also a g...Reconstructing enzymatic active sites presents a significant challenge due to the intricacies involved in achieving enzyme-like scaffold folding and spatial arrangement of essential functional groups.There is also a growing interest in building biocatalytic networks,wherein multiple enzymatic active sites are localized within a single artificial system,allowing for cascaded transformations.In this work,we report the self-assembly of imidazole or its derivatives with fluorenylmethyloxycarbonyl-modified histidine and Cu2+to fabricate a supramolecular catalyst,which possesses catechol oxidase-like dicopper center with multiple imidazole as the coordination sphere.Transmission electron microscopy,low-temperature X-band continuous-wave electron paramagnetic resonance,K-edge X-ray absorption spectra/the extended X-ray absorption fine structure analysis,and density functional theory modeling were used for the structural characterization of the catalyst.The phenol derivatives and the dissolved oxygen were used as the substrates,with the addition of 4-aminoantipyrine to generate a red adduct with a maximum absorbance at 510 nm,for obtaining time-dependent absorbance change curves and estimating the activities.The results reveal that the addition of imidazole synergistically accelerates the oxidative activity about 10-fold and the hydrolysis activity about 14-fold than fluorenylmethyloxycarbonyl modified-histidine/Cu2+.The supramolecular nanoassembly also exhibits the ability to catalyze oxidation/hydrolysis cascade reactions,converting 2′,7′-dichlorofluorescin diacetate into 2′,7′-dichlorofluorescein.This process can be regulated through the methylation of the imidazole component at various positions.This work may contribute to the design of advanced biomimetic catalysts,and shed light on early structural models of the active sites of the primitive copper-dependent enzymes.展开更多
Erratum to Nano Research,2024,17(6):4916−4923 https://doi.org/10.1007/s12274-024-6489-5 Labeling and statement of equal contribution of the authors Yuanxi Liu and Wenjie Xu were missed in the original article as well ...Erratum to Nano Research,2024,17(6):4916−4923 https://doi.org/10.1007/s12274-024-6489-5 Labeling and statement of equal contribution of the authors Yuanxi Liu and Wenjie Xu were missed in the original article as well as the Electronic Supplementary Material.Superscript symbols of equal contribution“§”were added to both authors in the author list,and their contribution was stated as follows:“§Yuanxi Liu and Wenjie Xu contributed equally to this work.”展开更多
Stimulator of interferon genes(STING)is an adaptor protein that is critical for effective innate antiviral and antitumor immunity.The activity of STING is heavily regulated by protein ubiquitination,which is fine-tune...Stimulator of interferon genes(STING)is an adaptor protein that is critical for effective innate antiviral and antitumor immunity.The activity of STING is heavily regulated by protein ubiquitination,which is fine-tuned by both E3 ubiquitin ligases and deubiquitinases.Here,we report that the deubiquitinase OTUD5 interacts with STING,cleaves its K48-linked polyubiquitin chains,and promotes its stability.Consistently,knockout of OTUD5 resulted in faster turnover of STING and subsequently impaired type I IFN signaling following cytosolic DNA stimulation.More importantly,Lyz2-Cre Otud5^(fl/Y) mice and CD11-Cre Otud5^(fl/Y) mice showed more susceptibility to herpes simplex virus type 1(HSV-1)infection and faster development of melanomas than their corresponding control littermates,indicating that OTUD5 is indispensable for STING-mediated antiviral and antitumor immunity.Our data suggest that OTUD5 is a novel checkpoint in the cGAS-STING cytosolic DNA sensing pathway.展开更多
It is an important goal for supramolecular chemistry to develop synthetic enzyme mimics rivaling native enzymes,while de novo fabrication of such mimics remains a challenge.Alternatively,the catalytic groups from the ...It is an important goal for supramolecular chemistry to develop synthetic enzyme mimics rivaling native enzymes,while de novo fabrication of such mimics remains a challenge.Alternatively,the catalytic groups from the supramolecular complex can be integrated with the active sites of natural enzymes.Herein,we present a supramolecular catalytic hybrid that is self-assembled from oligohistidine-based peptides and a heme-dependent peroxidase.The results indicate that the peptides altered the enzyme conformation,promoted the transitions between the resting and the intermediate states of the heme,and increased the turnover rate of the enzyme by up to three-fold.We propose that the histidine residues from the peptides may collaborate with the groups in the natural heme pocket to accelerate the catalytic cycles of the enzyme.Our observations underline the advantages of the supramolecular approach and suggest that molecular self-assembly may combine with enzymes to provide a simple strategy to engineer the enzymatic active sites.展开更多
基金supported by the National Natural Science Foundation of China(61762093)the 17th Batches of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province(2014HB019)+1 种基金the Key Applied and Basic Research Foundation of Yunnan Province(2018FA036)the Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province。
文摘In a passive ultra-high frequency(UHF)radio frequency identification(RFID)system,the recovery of collided tag signals on a physical layer can enhance identification efficiency.However,frequency drift is very common in UHF RFID systems,and will have an influence on the recovery on the physical layer.To address the problem of recovery with the frequency drift,this paper adopts a radial basis function(RBF)network to separate the collision signals,and decode the signals via FM0 to recovery collided RFID tags.Numerical results show that the method in this paper has better performance of symbol error rate(SER)and separation efficiency compared to conventional methods when frequency drift occurs.
文摘A deep trench super-junction LDMOS with double charge compensation layer(DC DT SJ LDMOS)is proposed in this paper.Due to the capacitance effect of the deep trench which is known as silicon-insulator-silicon(SIS)capacitance,the charge balance in the super-junction region of the conventional deep trench SJ LDMOS(Con.DT SJ LDMOS)device will be broken,resulting in breakdown voltage(BV)of the device drops.DC DT SJ LDMOS solves the SIS capacitance effect by adding a vertical variable doped charge compensation layer and a triangular charge compensation layer inside the Con.DT SJ LDMOS device.Therefore,the drift region reaches an ideal charge balance state again.The electric field is optimized by double charge compensation and gate field plate so that the breakdown voltage of the proposed device is improved sharply,meanwhile the enlarged on-current region reduces its specific on-resistance.The simulation results show that compared with the Con.DT SJ LD-MOS,the BV of the DC DT SJ LDMOS has been increased from 549.5 to 705.5 V,and the R_(on,sp) decreased to 23.7 mΩ·cm^(2).
基金supported in part by the National Natural Science Foundation of China(61762093)the 17th Batch of Young and Middle-aged Leaders in Academic and Technical Reserved Talents Project of Yunnan Province(2014HB019)the Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province
文摘Dynamic framed slotted Aloha algorithm is one of popular passive radio frequency identification(RFID) tag anticollision algorithms. In the algorithm, a frame length requires dynamical adjustment to achieve higher identification efficiency.Generally, the adjustment of the frame length is not only related to the number of tags, but also to the occurrence probability of capture effect. Existing algorithms could estimate both the number of tags and the probability of capture effect. Under large-scale RFID tag identification, however, the number of tags would be much larger than an initial frame length. In this scenario, the existing algorithm's estimation errors would substantially increase. In this paper, we propose a novel algorithm called capture-aware Bayesian estimate, which adopts Bayesian rules to accurately estimate the number and the probability simultaneously. From numerical results, the proposed algorithm adapts well to the large-scale RFID tag identification. It has lower estimation errors than the existing algorithms. Further,the identification efficiency from the proposed estimate is also higher than the existing algorithms.
基金supported by the National Natural Science Foundation of China(No.61841110)AoShan Talents Outstanding Scientist Program by Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2017ASTCP-OS03)。
文摘In this letter,we design and analyze 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier(PA)in 0.18μm CMOS technology.By using two-stage quadruple-stacked topology and feedback technology,the proposed PA realizes an ultra-wideband CMOS PA in a small chip area.Wideband impedance matching is achieved with smaller chip dimension.The effects of feedback resistors on the RF performance are also discussed for this stacked-FET PA.The PA shows measured input return loss(<–10.8 dB)and output return loss(<–9.6 dB)in the entire bandwidth.A saturated output power of 22 dBm with maximum 20%power added efficiency(PAE)is also measured with the drain voltage at 5 V.The chip size is 0.44 mm^2 including all pads.
文摘Interconnect reliability has been regarded as a discipline that must be seriously taken into account from the early design phase of integrated circuit (IC). In order to study the status and trend of the interconnect reliability, a comprehensive review of the published literatures is carried out. This can depict the global trend of ICs’ interconnect reliability and help the new entrants to understand the present situation of this area.
基金the National Natural Science Foundation of China(No.52173194)Beijing Natural Science Foundation(No.2232017)Fundamental Research Funds for the Central Universities(No.buctrc201902).
文摘Reconstructing enzymatic active sites presents a significant challenge due to the intricacies involved in achieving enzyme-like scaffold folding and spatial arrangement of essential functional groups.There is also a growing interest in building biocatalytic networks,wherein multiple enzymatic active sites are localized within a single artificial system,allowing for cascaded transformations.In this work,we report the self-assembly of imidazole or its derivatives with fluorenylmethyloxycarbonyl-modified histidine and Cu2+to fabricate a supramolecular catalyst,which possesses catechol oxidase-like dicopper center with multiple imidazole as the coordination sphere.Transmission electron microscopy,low-temperature X-band continuous-wave electron paramagnetic resonance,K-edge X-ray absorption spectra/the extended X-ray absorption fine structure analysis,and density functional theory modeling were used for the structural characterization of the catalyst.The phenol derivatives and the dissolved oxygen were used as the substrates,with the addition of 4-aminoantipyrine to generate a red adduct with a maximum absorbance at 510 nm,for obtaining time-dependent absorbance change curves and estimating the activities.The results reveal that the addition of imidazole synergistically accelerates the oxidative activity about 10-fold and the hydrolysis activity about 14-fold than fluorenylmethyloxycarbonyl modified-histidine/Cu2+.The supramolecular nanoassembly also exhibits the ability to catalyze oxidation/hydrolysis cascade reactions,converting 2′,7′-dichlorofluorescin diacetate into 2′,7′-dichlorofluorescein.This process can be regulated through the methylation of the imidazole component at various positions.This work may contribute to the design of advanced biomimetic catalysts,and shed light on early structural models of the active sites of the primitive copper-dependent enzymes.
文摘Erratum to Nano Research,2024,17(6):4916−4923 https://doi.org/10.1007/s12274-024-6489-5 Labeling and statement of equal contribution of the authors Yuanxi Liu and Wenjie Xu were missed in the original article as well as the Electronic Supplementary Material.Superscript symbols of equal contribution“§”were added to both authors in the author list,and their contribution was stated as follows:“§Yuanxi Liu and Wenjie Xu contributed equally to this work.”
基金This work was supported by grants from the National Natural Science Foundation of China(31730026,81930039,and 81525012).
文摘Stimulator of interferon genes(STING)is an adaptor protein that is critical for effective innate antiviral and antitumor immunity.The activity of STING is heavily regulated by protein ubiquitination,which is fine-tuned by both E3 ubiquitin ligases and deubiquitinases.Here,we report that the deubiquitinase OTUD5 interacts with STING,cleaves its K48-linked polyubiquitin chains,and promotes its stability.Consistently,knockout of OTUD5 resulted in faster turnover of STING and subsequently impaired type I IFN signaling following cytosolic DNA stimulation.More importantly,Lyz2-Cre Otud5^(fl/Y) mice and CD11-Cre Otud5^(fl/Y) mice showed more susceptibility to herpes simplex virus type 1(HSV-1)infection and faster development of melanomas than their corresponding control littermates,indicating that OTUD5 is indispensable for STING-mediated antiviral and antitumor immunity.Our data suggest that OTUD5 is a novel checkpoint in the cGAS-STING cytosolic DNA sensing pathway.
基金The authors are grateful for Fundamental Research Funds for the Central Universities(Nos.XK1806 and buctrc201902)the financial support from the National Natural Science Foundation of China(Nos.21872044 and 52173194).
文摘It is an important goal for supramolecular chemistry to develop synthetic enzyme mimics rivaling native enzymes,while de novo fabrication of such mimics remains a challenge.Alternatively,the catalytic groups from the supramolecular complex can be integrated with the active sites of natural enzymes.Herein,we present a supramolecular catalytic hybrid that is self-assembled from oligohistidine-based peptides and a heme-dependent peroxidase.The results indicate that the peptides altered the enzyme conformation,promoted the transitions between the resting and the intermediate states of the heme,and increased the turnover rate of the enzyme by up to three-fold.We propose that the histidine residues from the peptides may collaborate with the groups in the natural heme pocket to accelerate the catalytic cycles of the enzyme.Our observations underline the advantages of the supramolecular approach and suggest that molecular self-assembly may combine with enzymes to provide a simple strategy to engineer the enzymatic active sites.