期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Fundamental Understanding on Selenium Electrochemistry:From Electrolytic Cell to Advanced Energy Storage
1
作者 Jiguo Tu Cheng Chang +4 位作者 Jingxiu Wang haiping lei R.Vasant Kumar Mingyong Wang Shuqiang Jiao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期236-256,共21页
Selenium(Se),as an important quasi-metal element,has attracted much attention in the fields of thin-film solar cells,electrocatalysts and energy storage applications,due to its unique physical and chemical properties.... Selenium(Se),as an important quasi-metal element,has attracted much attention in the fields of thin-film solar cells,electrocatalysts and energy storage applications,due to its unique physical and chemical properties.However,the electrochemical behavior of Se in different systems from electrolytic cell to battery are complex and not fully understood.In this article,we focus on the electrochemical processes of Se in aqueous solutions,molten salts and ionic liquid electrolytes,as well as the application of Se-containing materials in energy storage.Initially,the electrochemical behaviors of Se-containing species in different systems are comprehensively summarized to understand the complexity of the kinetic processes and guide the Se electrodeposition.Then,the relationship between the deposition conditions and resulting structure and morphology of electrodeposited Se is discussed,so as to regulate the morphology and composition of the products.Finally,the advanced energy storage applications of Se in thin-film solar cells and secondary batteries are reviewed,and the electrochemical reaction processes of Se are systematically comprehended in monovalent and multivalent metal-ion batteries.Based on understanding the fundamental electrochemistry mechanism,the future development directions of Se-containing materials are considered in view of the in-depth review of reaction kinetics and energy storage applications. 展开更多
关键词 electrochemical behaviors ELECTRODEPOSITION electrolytes energy storage SELENIUM
下载PDF
Core-shell mesoporous carbon hollow spheres as Se hosts for advanced Al-Se batteries
2
作者 haiping lei Tianwei Wei +1 位作者 Jiguo Tu Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期899-906,共8页
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen... Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN. 展开更多
关键词 aluminum-selenium batteries intermediate products core-shell mesoporous carbon hollow sphere cycling performance
下载PDF
MOF-based quasi-solid-state electrolyte for long-life Al-Se battery 被引量:1
3
作者 haiping lei Jiguo Tu +4 位作者 Suqin Li Jiacheng Wang Zheng Huang Zhijing Yu Shuqiang Jiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期237-245,I0006,共10页
Aluminum-selenium(Al-Se)batteries,which possess a high theoretical specific capacity of 1357 mA h g^(-1),represent a promising energy storage technology.However,they suffer from significant attenuation of capacity and... Aluminum-selenium(Al-Se)batteries,which possess a high theoretical specific capacity of 1357 mA h g^(-1),represent a promising energy storage technology.However,they suffer from significant attenuation of capacity and low cycle life due to the shuttle effect.To mitigate the shuttle effect induced by soluble selenium chloroaluminate compound that tends to migrate towards the negative electrode,a quasi-solid-state Al-Se battery was fabricated through the synthesis of a multi-aperture structure quasisolid-state electrolyte(MOF@GPE)based on metal-organic framework(MOF)material and gel-polymer electrolyte(GPE).The high ionic conductivity(1.13×10^(-3)S cm^(-1))of MOF@GPE at room temperature,coupled with its wide electrochemical stability window(2.45 V),can facilitate ion transport kinetics and enhance the electrochemical performance of Al-Se batteries.The MOF@GPE-based quasi-solidstate Al-Se batteries exhibit outstanding long-life cycling stability,delivering a high specific discharge capacity of 548 mA h g^(-1)with a maintained discharge specific capacity of 345 mA h g^(-1)after 500 cycles at a current density of 200 mA g^(-1).The stable ion transmission and high ion transport kinetics in MOF@GPE can be attributed to the stable structure and permeable channel of MOF,which effectively captures the soluble selenium chloroaluminate compound and further restrains the shuttle effect,resulting in improved cycling performance. 展开更多
关键词 Aluminum selenium batteries MOF Quasi-solid-state electrolyte Shuttle effect Transport kinetics
下载PDF
An efficient molten-salt electro-deoxidation strategy enabling fast-kinetics and long-life aluminum-selenium batteries
4
作者 Jiguo Tu Zheng Huang +3 位作者 Cheng Chang haiping lei Shuai Wang Shuqiang Jiao 《SusMat》 SCIE EI 2024年第1期126-139,共14页
Aluminum-selenium(Al-Se)batteries have been considered as one of the most promising energy storage systems owing to their high capacity,energy density,and cost effectiveness,but Se falls challenges in addressing the s... Aluminum-selenium(Al-Se)batteries have been considered as one of the most promising energy storage systems owing to their high capacity,energy density,and cost effectiveness,but Se falls challenges in addressing the shuttle effect of soluble intermediate product and sluggish reaction kinetics in the solid-solid conversion process during cycling.Herein,we propose an unprecedented design concept for fabricating uniform Se/C hollow microspheres with controllable morphologies through low-temperature electro-deoxidation in neutral NaCl-AlCl_(3) molten salt system.Such Se/C hollow microspheres are demonstrated to hold a favorable hollow structure for hosting Se,which can not only suppress the dissolution of soluble intermediate products into the electrolyte,thereby maintaining the structural integrity and maximizing Se utilization of the active material,but also promote the electrical/ionic conductivity,thus facilitating the rapid reaction kinetics during cycling.Accordingly,the as-prepared Se/C hollow microspheres exhibit a high reversible capacity of 720.1 mAh g^(−1)at 500 mA g^(−1).Even at the high current density of 1000 mA g^(−1),Se/C delivers a high discharge capacity of 564.0 mAh g^(−1),long-term stability over 1100 cycles and high Coulombic efficiency of 98.6%.This present work provides valuable insights into short-process recovery of advanced Se-containingmaterials and value-added utilization for energy storage. 展开更多
关键词 aluminum-ion batteries hollow Se/C microspheres long-term cycling stability lowtemperature electro-deoxidation NaCl-AlCl_(3)molten salt
原文传递
Single-atom electrocatalyst and gel polymer electrolyte boost the energy density and life of aluminum-sulfur batteries
5
作者 Zheng Huang Wei Wang +3 位作者 Mingyin Kou haiping lei Yiwa Luo Shuqiang Jiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第21期86-93,共8页
Aluminum-sulfur(Al-S)batteries are regarded as a desirable candidate for large-scale energy storage be-cause of their high energy density and abundant natural resources of electrode materials.To address the critical i... Aluminum-sulfur(Al-S)batteries are regarded as a desirable candidate for large-scale energy storage be-cause of their high energy density and abundant natural resources of electrode materials.To address the critical issues of low discharge voltage and rapid capacity decay in Al-S batteries,here an electrocatalyst-assisted gel-polymer electrolyte(GPE)-based Al-S battery is fabricated using platinum nanoparticles deco-rated platinum/nitrogen co-doped graphene(PtNG)as sulfur host for positive electrode and metal-organic frameworks(MOF)filled GPE(MOF@GPE)as solid electrolyte.Pt-based active sites derived from Pt nan-oclusters’surface and atomically dispersed Pt-N_(2) chemical bonds in PtNG can catalyze the decomposition of sulfur and polysulfides in the electrochemical process,greatly accelerating the sulfur redox kinetics.Furthermore,the MOF fillers in MOF@GPE electrolyte significantly inhibit the shuttle effect of polysul-fides,efficiently improving the utilization of sulfur.Consequently,the established Al-S battery delivers a specific capacity of 1009 mAh g^(−1) with a discharge plateau of∼0.95 V,along with a capacity retention of 65% after 300 cycles,revealing ultrahigh energy density and long cycle life.Such a strategy of combin-ing electrocatalyst and MOF-based gel electrolyte affords a fresh plateau for promoting the rechargeable ability of Al-S batteries,advancing remarkable routes for achieving efficient and stable energy storage devices. 展开更多
关键词 Aluminum-sulfur batteries Gel polymer electrolyte Single atom electrocatalyst Shuttle effect Reaction kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部