期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Controllable fabrication of FeCoS_(4) nanoparticles/S-doped bowl-shaped hollow carbon as efficient lithium storage anode
1
作者 Ming Zhou Mengrong Wu +8 位作者 haiwei yu Xiangjun Zheng Kuan Shen Xingmei Guo yuanjun Liu Fu Cao Hongxing Gu Qinghong Kong Junhao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期78-88,共11页
To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through... To address the low conductivity and easy agglomeration of transition metal sulfide nanoparticles,FeCoS_(4) nanoparticles embedded in S-doped hollow carbon(FeCoS_(4)@S-HC)composites were successfully fabricated through a combination of hydrothermal processes and sulfidation treatment.The unique bowlshaped FeCoS_(4)/S-HC composites exhibit excellent structural stability with a high specific surface area of 303.7 m^(2)·g^(-1) and a pore volume of 0.93 cm^(3)·g^(-1).When applied as anode material for lithium-ion batteries,the FeCoS_(4)@S-HC anode exhibits efficient lithium storage with high reversible specific capacity(970.2 mA·h·g^(-1) at 100 mA·g^(-1))and enhanced cycling stability(574 mA·h·g^(-1) at 0.2 A·g^(-1) after 350 cycles,a capacity retention of 84%).The excellent lithium storage is attributed to the fact that the bimetallic FeCoS_(4) nanoparticles with abundant active sites can accelerate the electrochemical reaction kinetics,and the bowl-shaped S-HC structure can provide a stable mechanical structure to suppress volume expansion. 展开更多
关键词 Bimetallic sulfides Bowl-shaped hollow carbon S doping Buffering volume expand Lithium-ion batteries
下载PDF
Acidity effects of Hβ zeolite on olefin alkylation of thiophenic sulfur in gasoline 被引量:4
2
作者 Zekai Zhang Dong Liu +3 位作者 Xiangxue Zhu haiwei yu Shenglin Liu Longya Xu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期45-50,共6页
Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its ca... Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its catalytic ability for the thiophene alkylation, xylene alkylation and hexene oligomerization was investigated. The results showed that the acidity of the Hβ zeolite was increased with the decrease of Si/Al2 ratio, but its catalytic ability was not always increased. In fact, it reached the maximal catalytic ability at Si/Al2 ratio of 66, and under the reaction conditions of 60 ℃, 1.5 MPa, WHSV 3.0 h^-1 and time on stream 2 h. At the ratio, the conversion of thiophene, xylene, and oligomerized hexene were 96.6%, 2.7% and 2.8%, respectively. An optimal Si/Al2 ratio exists for the catalytic performance of Hβ zeolite. By investigating the coke deposition of the used Hβ zeolite catalysts, it has been found that the optimal Si/Al2 ratio is attributed to the combined effect of the carbocation activation capability and the hydrogen transformation capability of the Hβ zeolite catalyst. 展开更多
关键词 DESULFURIZATION ALKYLATION ACIDITY GASOLINE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部