Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study o...Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.展开更多
Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Ce...Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.展开更多
Traumatic brain injury(TBI)triggers the activation of the endogenous coagulation mechanism,and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors,also known as protease-a...Traumatic brain injury(TBI)triggers the activation of the endogenous coagulation mechanism,and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors,also known as protease-activated receptors(PARs).However,thrombin is one of the most critical factors in secondary brain injury.Thus,the PARs may be effective targets against hemorrhagic brain injury.Since the PAR1 antagonist has an increased bleeding risk in clinical practice,PAR4 blockade has been suggested as a more promising treatment.Here,we explored the expression pattern of PAR4 in the brain of mice after TBI,and explored the effect and possible mechanism of BMS-986120(BMS),a novel selective and reversible PAR4 antagonist on secondary brain injury.Treatment with BMS protected against TBI in mice.mRNA-seq analysis,Western blot,and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes,and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process.Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI,and suggest that BMS has a potential clinical application in the management of TBI.展开更多
Clinical advances in the treatment of intracranial hemorrhage(ICH)are restricted by the incomplete understanding of the molecular mechanisms contributing to secondary brain injury.Acrolein is a highly active unsaturat...Clinical advances in the treatment of intracranial hemorrhage(ICH)are restricted by the incomplete understanding of the molecular mechanisms contributing to secondary brain injury.Acrolein is a highly active unsaturated aldehyde which has been implicated in many nervous system diseases.Our results indicated a significant increase in the level of acrolein after ICH in mouse brain.In primary neurons,acrolein induced an increase in mitochondrial fragmentation,loss of mitochondrial membrane potential,generation of reactive oxidative species,and release of mitochondrial cytochrome c.Mechanistically,acrolein facilitated the translocation of dynaminrelated protein 1(Drpl)from the cytoplasm onto the mitochondrial membrane and led to excessive mitochondrial fission.Further studies found that treatment with hydralazine(an acrolein scavenger)significantly reversed Drpl translocation and the morphological damage of mitochondria after ICH.In parallel,the neural apoptosis,brain edema,and neurological functional deficits induced by ICH were also remarkably alleviated.In conclusion,our results identify acrolein as an important contributor to the secondary brain injury following ICH.Meanwhile,we uncovered a novel mechanism by which Drpl-mediated mitochondrial oxidative damage is involved in acroleininduced brain injury.展开更多
Traumatic brain injury(TBI)-induced coagulopathy has increasingly been recognized as a significant risk factor for poor outcomes,but the pathogenesis remains poorly understood.In this study,we aimed to investigate the...Traumatic brain injury(TBI)-induced coagulopathy has increasingly been recognized as a significant risk factor for poor outcomes,but the pathogenesis remains poorly understood.In this study,we aimed to investigate the causal role of acrolein,a typical lipid peroxidation product,in TBI-induced coagulopathy,and further explore the underlying molecular mechanisms.We found that the level of plasma acrolein in TBI patients suffering from coagulopathy was higher than that in those without coagulopathy.Using a controlled cortical impact mouse model,we demonstrated that the acrolein scavenger phenelzine prevented TBI-induced coagulopathy and recombinant ADAMTS-13 prevented acrolein-induced coagulopathy by cleaving von Willebrand factor(VWF).Our results showed that acrolein may contribute to an early hypercoagulable state after TBI by regulating VWF secretion.mRNA sequencing(mRNA-seq)and transcriptome analysis indicated that acrolein over-activated autophagy,and subsequent experiments revealed that acrolein activated autophagy partly by regulating the Akt/mTOR pathway.In addition,we demonstrated that acrolein was produced in the perilesional cortex,affected endothelial cell integrity,and disrupted the blood-brain barrier.In conclusion,in this study we uncovered a novel pro-coagulant effect of acrolein that may contribute to TBI-induced coagulopathy and vascular leakage,providing an alternative therapeutic target.展开更多
The design, fabrication, and testing of soft sensors that measure elastomer curvature and mechanical finger bending are described in this study. The base of the soft sensors is polydimethylsiloxane (PDMS), which is a ...The design, fabrication, and testing of soft sensors that measure elastomer curvature and mechanical finger bending are described in this study. The base of the soft sensors is polydimethylsiloxane (PDMS), which is a translucent elastomer. The main body of the soft sensors consists of three layers of silicone rubber plate, and the sensing element is a microchannel filled with gallium-indium-tin (Ga-In-Sn) alloy, which is embedded in the elastomer. First, the working principle of soft sensors is investigated, and their structure is designed. Second, the relationship between curvature and resistance is determined. Third, several sensors with different specifications are built in accordance with the structural design. Experiments show that the sensors exhibit high accuracy when the curvature changes within a certain range. Lastly, the soft sensors are applied to the measurement of mechanical finger bending. Experiments show that soft curvature sensors can effectively reflect mechanical finger bending and can be used to measure the bending of mechanical fingers with high sensitivity within a certain working range.展开更多
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant nos. 50639030 and 50979070) and the 863 Program of China (Grant no. 2006AA09Z348).
文摘Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.
文摘Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.
基金This work was supported by grants from the National Natural Science Foundation of China(81630027,81571215)the Chang Jiang Scholar Program of China。
文摘Traumatic brain injury(TBI)triggers the activation of the endogenous coagulation mechanism,and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors,also known as protease-activated receptors(PARs).However,thrombin is one of the most critical factors in secondary brain injury.Thus,the PARs may be effective targets against hemorrhagic brain injury.Since the PAR1 antagonist has an increased bleeding risk in clinical practice,PAR4 blockade has been suggested as a more promising treatment.Here,we explored the expression pattern of PAR4 in the brain of mice after TBI,and explored the effect and possible mechanism of BMS-986120(BMS),a novel selective and reversible PAR4 antagonist on secondary brain injury.Treatment with BMS protected against TBI in mice.mRNA-seq analysis,Western blot,and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes,and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process.Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI,and suggest that BMS has a potential clinical application in the management of TBI.
基金This work was supported by grants from the National Natural Science Foundation of China(81630027,81571215)and the Chang Jiang Scholar Program of China.
文摘Clinical advances in the treatment of intracranial hemorrhage(ICH)are restricted by the incomplete understanding of the molecular mechanisms contributing to secondary brain injury.Acrolein is a highly active unsaturated aldehyde which has been implicated in many nervous system diseases.Our results indicated a significant increase in the level of acrolein after ICH in mouse brain.In primary neurons,acrolein induced an increase in mitochondrial fragmentation,loss of mitochondrial membrane potential,generation of reactive oxidative species,and release of mitochondrial cytochrome c.Mechanistically,acrolein facilitated the translocation of dynaminrelated protein 1(Drpl)from the cytoplasm onto the mitochondrial membrane and led to excessive mitochondrial fission.Further studies found that treatment with hydralazine(an acrolein scavenger)significantly reversed Drpl translocation and the morphological damage of mitochondria after ICH.In parallel,the neural apoptosis,brain edema,and neurological functional deficits induced by ICH were also remarkably alleviated.In conclusion,our results identify acrolein as an important contributor to the secondary brain injury following ICH.Meanwhile,we uncovered a novel mechanism by which Drpl-mediated mitochondrial oxidative damage is involved in acroleininduced brain injury.
基金the National Natural Science Foundation of China(81630027).
文摘Traumatic brain injury(TBI)-induced coagulopathy has increasingly been recognized as a significant risk factor for poor outcomes,but the pathogenesis remains poorly understood.In this study,we aimed to investigate the causal role of acrolein,a typical lipid peroxidation product,in TBI-induced coagulopathy,and further explore the underlying molecular mechanisms.We found that the level of plasma acrolein in TBI patients suffering from coagulopathy was higher than that in those without coagulopathy.Using a controlled cortical impact mouse model,we demonstrated that the acrolein scavenger phenelzine prevented TBI-induced coagulopathy and recombinant ADAMTS-13 prevented acrolein-induced coagulopathy by cleaving von Willebrand factor(VWF).Our results showed that acrolein may contribute to an early hypercoagulable state after TBI by regulating VWF secretion.mRNA sequencing(mRNA-seq)and transcriptome analysis indicated that acrolein over-activated autophagy,and subsequent experiments revealed that acrolein activated autophagy partly by regulating the Akt/mTOR pathway.In addition,we demonstrated that acrolein was produced in the perilesional cortex,affected endothelial cell integrity,and disrupted the blood-brain barrier.In conclusion,in this study we uncovered a novel pro-coagulant effect of acrolein that may contribute to TBI-induced coagulopathy and vascular leakage,providing an alternative therapeutic target.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51405280).
文摘The design, fabrication, and testing of soft sensors that measure elastomer curvature and mechanical finger bending are described in this study. The base of the soft sensors is polydimethylsiloxane (PDMS), which is a translucent elastomer. The main body of the soft sensors consists of three layers of silicone rubber plate, and the sensing element is a microchannel filled with gallium-indium-tin (Ga-In-Sn) alloy, which is embedded in the elastomer. First, the working principle of soft sensors is investigated, and their structure is designed. Second, the relationship between curvature and resistance is determined. Third, several sensors with different specifications are built in accordance with the structural design. Experiments show that the sensors exhibit high accuracy when the curvature changes within a certain range. Lastly, the soft sensors are applied to the measurement of mechanical finger bending. Experiments show that soft curvature sensors can effectively reflect mechanical finger bending and can be used to measure the bending of mechanical fingers with high sensitivity within a certain working range.