As the efficiency of dispersants with different origins is questionable for each typical oil sample, the present study provides a reproducible and reliable method for screening asphaltene dispersants for a typical asp...As the efficiency of dispersants with different origins is questionable for each typical oil sample, the present study provides a reproducible and reliable method for screening asphaltene dispersants for a typical asphal- tenic crude oil. Four different asphaltene dispersants (polyisobutylene succinimide, polyisobutylene succinic ester, nonylphenol-formaldehyde resin modified by polyamines, and rapeseed oil amide) were prepared and their performance on two oils from an Iranian field under laboratory and reservoir conditions was studied. A thorough analysis including ash content and SARA tests was performed on the solid asphaltene particles to characterize the nature of deposits. Then a highly efficient carrier fluid, which is crucial when injecting dispersant into the wells, was selected from a variety of chemicals by comparing their solubility. In the next step, using an optical microscope, a viscometer, and a Turbiscan, the screening of dispersants under laboratory conditions was done on a mixture of dead oil and dispersant to evaluate the onset of asphaltene precipitation and its stability when titrating by a precipitant. Finally, two different mixtures of the efficient dispersants, live oil, and carrier fluid were used with the solid detection system (SDS) and the filtration method to examine their effects on the onset pressure of asphaltene precipitation and the asphaltene content of the crude oil under reservoir conditions. The results show that the combination of experimental methods used in this work could be consistently applied to screening asphaltene dispersants. Among the four different dispersants applied here, the dispersant based on nonylphenol-formaldehyde resin modified by polyamines showed the best performance on the available live oils. This chemical modified the onset pressure of asphaltene precipitation of light oil from 4300 psi to about 3600 psi and decreased the precipitated asphaltene of heavy oil by about 30 %.展开更多
文摘As the efficiency of dispersants with different origins is questionable for each typical oil sample, the present study provides a reproducible and reliable method for screening asphaltene dispersants for a typical asphal- tenic crude oil. Four different asphaltene dispersants (polyisobutylene succinimide, polyisobutylene succinic ester, nonylphenol-formaldehyde resin modified by polyamines, and rapeseed oil amide) were prepared and their performance on two oils from an Iranian field under laboratory and reservoir conditions was studied. A thorough analysis including ash content and SARA tests was performed on the solid asphaltene particles to characterize the nature of deposits. Then a highly efficient carrier fluid, which is crucial when injecting dispersant into the wells, was selected from a variety of chemicals by comparing their solubility. In the next step, using an optical microscope, a viscometer, and a Turbiscan, the screening of dispersants under laboratory conditions was done on a mixture of dead oil and dispersant to evaluate the onset of asphaltene precipitation and its stability when titrating by a precipitant. Finally, two different mixtures of the efficient dispersants, live oil, and carrier fluid were used with the solid detection system (SDS) and the filtration method to examine their effects on the onset pressure of asphaltene precipitation and the asphaltene content of the crude oil under reservoir conditions. The results show that the combination of experimental methods used in this work could be consistently applied to screening asphaltene dispersants. Among the four different dispersants applied here, the dispersant based on nonylphenol-formaldehyde resin modified by polyamines showed the best performance on the available live oils. This chemical modified the onset pressure of asphaltene precipitation of light oil from 4300 psi to about 3600 psi and decreased the precipitated asphaltene of heavy oil by about 30 %.