Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu...Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.展开更多
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and ident...Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).展开更多
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t...The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.展开更多
Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.I...Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks.展开更多
BACKGROUND Donor-recipient size mismatch(DRSM)is considered a crucial factor for poor outcomes in liver transplantation(LT)because of complications,such as massive intraoperative blood loss(IBL)and early allograft dys...BACKGROUND Donor-recipient size mismatch(DRSM)is considered a crucial factor for poor outcomes in liver transplantation(LT)because of complications,such as massive intraoperative blood loss(IBL)and early allograft dysfunction(EAD).Liver volumetry is performed routinely in living donor LT,but rarely in deceased donor LT(DDLT),which amplifies the adverse effects of DRSM in DDLT.Due to the various shortcomings of traditional manual liver volumetry and formula methods,a feasible model based on intelligent/interactive qualitative and quantitative analysis-three-dimensional(IQQA-3D)for estimating the degree of DRSM is needed.AIM To identify benefits of IQQA-3D liver volumetry in DDLT and establish an estimation model to guide perioperative management.METHODS We retrospectively determined the accuracy of IQQA-3D liver volumetry for standard total liver volume(TLV)(sTLV)and established an estimation TLV(eTLV)index(eTLVi)model.Receiver operating characteristic(ROC)curves were drawn to detect the optimal cut-off values for predicting massive IBL and EAD in DDLT using donor sTLV to recipient sTLV(called sTLVi).The factors influencing the occurrence of massive IBL and EAD were explored through logistic regression analysis.Finally,the eTLVi model was compared with the sTLVi model through the ROC curve for verification.RESULTS A total of 133 patients were included in the analysis.The Changzheng formula was accurate for calculating donor sTLV(P=0.083)but not for recipient sTLV(P=0.036).Recipient eTLV calculated using IQQA-3D highly matched with recipient sTLV(P=0.221).Alcoholic liver disease,gastrointestinal bleeding,and sTLVi>1.24 were independent risk factors for massive IBL,and drug-induced liver failure was an independent protective factor for massive IBL.Male donor-female recipient combination,model for end-stage liver disease score,sTLVi≤0.85,and sTLVi≥1.32 were independent risk factors for EAD,and viral hepatitis was an independent protective factor for EAD.The overall survival of patients in the 0.85<sTLVi<1.32 group was better compared to the sTLVi≤0.85 group and sTLVi≥1.32 group(P<0.001).There was no statistically significant difference in the area under the curve of the sTLVi model and IQQA-3D eTLVi model in the detection of massive IBL and EAD(all P>0.05).CONCLUSION IQQA-3D eTLVi model has high accuracy in predicting massive IBL and EAD in DDLT.We should follow the guidance of the IQQA-3D eTLVi model in perioperative management.展开更多
<div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the applica...<div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the application of non-metallic composite continuous pipe in oil field, this paper discusses a series of new full-scale test and evaluation technologies for accurately evaluating the product quality and practical application performance of non-metallic composite continuous pipe, which effectively solves the major technical problem that the new products of non-metallic pipe cannot be accurately evaluated. Based on the characteristics of the application of non-metallic composite continuous pipe in oil field, a series of new full-scale test evaluation technologies which can accurately evaluate the product quality and practical application performance of non-metallic pipe are designed through a large number of tests. The test and evaluation technology can accurately evaluate the key performance of high and low pressure cycle, high and low temperature cycle, gas permeability resistance, minimum bending radius etc. It provides a scientific evaluation basis for the standardized application of non-metallic continuous pipe and a reliable quality control method for the selection of products in oil field. </div>展开更多
针对目前人工识别羊个体疼痛过程中存在的经验要求高、识别准确率低、消耗成本高、延误疾病治疗等问题,引入当前主流图像分类网络VGGNet(Visual geometry group network)对有疼痛和无疼痛的羊脸表情进行识别,提出一种基于改进VGGNet的...针对目前人工识别羊个体疼痛过程中存在的经验要求高、识别准确率低、消耗成本高、延误疾病治疗等问题,引入当前主流图像分类网络VGGNet(Visual geometry group network)对有疼痛和无疼痛的羊脸表情进行识别,提出一种基于改进VGGNet的羊脸痛苦表情识别算法,改进后的网络为STVGGNet(Spatial transformer visual geometry group network)。该算法将空间变换网络引入VGGNet,通过空间变换网络增强对羊脸痛苦表情特征区域的关注程度,提高对羊脸痛苦表情的识别准确率。本文对原有的羊脸表情数据集进行了扩充,新增887幅羊脸表情图像。但是新的数据集图像数量仍然较少,所以本文利用ImageNet数据集进行迁移学习,微调后用来自动分类有痛苦和无痛苦的羊脸表情。对羊面部表情数据集的实验结果表明,使用STVGGNet实现的最佳训练准确率为99.95%,最佳验证准确率为96.06%,分别比VGGNet高0.15、0.99个百分点。因此,本文采用的模型在羊脸痛苦表情识别中有非常好的识别效果并且具有较强的鲁棒性,为畜牧业中羊的疾病检测智能化发展提供了技术支撑。展开更多
基金supported by the National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100(to SF)the National Natural Science Foundation of China No.81930070(to SF)+1 种基金Multi-fund Investment Key Projects,No.21JCZDJC01100(to ZW)the Tianjin Science and Technology Planning Project,No.22JRRCRC00010(to SF)。
文摘Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
基金supported by the National Natural Science Foundation of China,No.81330042,81620108018(both to SQF),and 81702147(to ZJW)
文摘Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
基金supported in part by the National Natural Science Foundation of China(92167201,62273264,61933007)。
文摘The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA.
基金supported in part by the National Natural Science Foundation of China(62293514,52275020,and 91948301)。
文摘Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks.
基金Supported by National Natural Science Foundation of China,No.82172628。
文摘BACKGROUND Donor-recipient size mismatch(DRSM)is considered a crucial factor for poor outcomes in liver transplantation(LT)because of complications,such as massive intraoperative blood loss(IBL)and early allograft dysfunction(EAD).Liver volumetry is performed routinely in living donor LT,but rarely in deceased donor LT(DDLT),which amplifies the adverse effects of DRSM in DDLT.Due to the various shortcomings of traditional manual liver volumetry and formula methods,a feasible model based on intelligent/interactive qualitative and quantitative analysis-three-dimensional(IQQA-3D)for estimating the degree of DRSM is needed.AIM To identify benefits of IQQA-3D liver volumetry in DDLT and establish an estimation model to guide perioperative management.METHODS We retrospectively determined the accuracy of IQQA-3D liver volumetry for standard total liver volume(TLV)(sTLV)and established an estimation TLV(eTLV)index(eTLVi)model.Receiver operating characteristic(ROC)curves were drawn to detect the optimal cut-off values for predicting massive IBL and EAD in DDLT using donor sTLV to recipient sTLV(called sTLVi).The factors influencing the occurrence of massive IBL and EAD were explored through logistic regression analysis.Finally,the eTLVi model was compared with the sTLVi model through the ROC curve for verification.RESULTS A total of 133 patients were included in the analysis.The Changzheng formula was accurate for calculating donor sTLV(P=0.083)but not for recipient sTLV(P=0.036).Recipient eTLV calculated using IQQA-3D highly matched with recipient sTLV(P=0.221).Alcoholic liver disease,gastrointestinal bleeding,and sTLVi>1.24 were independent risk factors for massive IBL,and drug-induced liver failure was an independent protective factor for massive IBL.Male donor-female recipient combination,model for end-stage liver disease score,sTLVi≤0.85,and sTLVi≥1.32 were independent risk factors for EAD,and viral hepatitis was an independent protective factor for EAD.The overall survival of patients in the 0.85<sTLVi<1.32 group was better compared to the sTLVi≤0.85 group and sTLVi≥1.32 group(P<0.001).There was no statistically significant difference in the area under the curve of the sTLVi model and IQQA-3D eTLVi model in the detection of massive IBL and EAD(all P>0.05).CONCLUSION IQQA-3D eTLVi model has high accuracy in predicting massive IBL and EAD in DDLT.We should follow the guidance of the IQQA-3D eTLVi model in perioperative management.
文摘<div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the application of non-metallic composite continuous pipe in oil field, this paper discusses a series of new full-scale test and evaluation technologies for accurately evaluating the product quality and practical application performance of non-metallic composite continuous pipe, which effectively solves the major technical problem that the new products of non-metallic pipe cannot be accurately evaluated. Based on the characteristics of the application of non-metallic composite continuous pipe in oil field, a series of new full-scale test evaluation technologies which can accurately evaluate the product quality and practical application performance of non-metallic pipe are designed through a large number of tests. The test and evaluation technology can accurately evaluate the key performance of high and low pressure cycle, high and low temperature cycle, gas permeability resistance, minimum bending radius etc. It provides a scientific evaluation basis for the standardized application of non-metallic continuous pipe and a reliable quality control method for the selection of products in oil field. </div>
文摘针对目前人工识别羊个体疼痛过程中存在的经验要求高、识别准确率低、消耗成本高、延误疾病治疗等问题,引入当前主流图像分类网络VGGNet(Visual geometry group network)对有疼痛和无疼痛的羊脸表情进行识别,提出一种基于改进VGGNet的羊脸痛苦表情识别算法,改进后的网络为STVGGNet(Spatial transformer visual geometry group network)。该算法将空间变换网络引入VGGNet,通过空间变换网络增强对羊脸痛苦表情特征区域的关注程度,提高对羊脸痛苦表情的识别准确率。本文对原有的羊脸表情数据集进行了扩充,新增887幅羊脸表情图像。但是新的数据集图像数量仍然较少,所以本文利用ImageNet数据集进行迁移学习,微调后用来自动分类有痛苦和无痛苦的羊脸表情。对羊面部表情数据集的实验结果表明,使用STVGGNet实现的最佳训练准确率为99.95%,最佳验证准确率为96.06%,分别比VGGNet高0.15、0.99个百分点。因此,本文采用的模型在羊脸痛苦表情识别中有非常好的识别效果并且具有较强的鲁棒性,为畜牧业中羊的疾病检测智能化发展提供了技术支撑。