In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u...In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.展开更多
Objective:The open-label,phase II RATIONALE-209 study evaluated tislelizumab(anti-programmed cell death protein 1 antibody)as a tissue-agnostic monotherapy for microsatellite instability-high(MSI-H)/mismatch repair-de...Objective:The open-label,phase II RATIONALE-209 study evaluated tislelizumab(anti-programmed cell death protein 1 antibody)as a tissue-agnostic monotherapy for microsatellite instability-high(MSI-H)/mismatch repair-deficient(dMMR)tumors.Methods:Adults with previously treated,locally advanced unresectable or metastatic MSI-H/dMMR solid tumors were enrolled.Patients received tislelizumab 200 mg intravenously every 3 weeks.Objective response rate(ORR;primary endpoint),duration of response(DoR),and progression-free survival(PFS)were assessed by independent review committee(Response Evaluation Criteria in Solid Tumors v1.1).Results:Eighty patients were enrolled and treated;75(93.8%)patients had measurable disease at baseline.Most had metastatic disease and received at least one prior therapy for advanced/metastatic disease(n=79;98.8%).At primary analysis(data cutoff July 8,2021;median follow-up 15.2 months),overall ORR[46.7%;95%confidence interval(95%CI),35.1−58.6;one-sided P<0.0001]and ORR across tumor-specific subgroups[colorectal(n=46):39.1%(95%CI,25.1–54.6);gastric/gastroesophageal junction(n=9):55.6%(95%CI,21.2−86.3);others(n=20):60.0%(95%CI,36.1−80.9)]were significantly greater with tislelizumab vs.a prespecified historical control ORR of 10%;five(6.7%)patients had complete responses.Median DoR,PFS,and overall survival were not reached with long-term follow-up(data cutoff December 5,2022;median follow-up 28.9 months).Tislelizumab was well tolerated with no unexpected safety signals.Treatment-related adverse events(TRAEs)of grade≥3 occurred in 53.8%of patients;7.5%of patients discontinued treatment due to TRAEs.Conclusions:Tislelizumab demonstrated a significant ORR improvement in patients with previously treated,locally advanced unresectable or metastatic MSI-H/dMMR tumors and was generally well tolerated.展开更多
Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rare...Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.展开更多
基金supported by the Key Research and Development Program of China(No.2022YFC3005401)Key Research and Development Program of China,Yunnan Province(No.202203AA080009,202202AF080003)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0482).
文摘In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.
基金supported by the National Natural Science Foundation of China(Nos.51775480,51605420)the Natural Science Foundation of Hebei Province,China(No.E2018203143)。
基金sponsored by BeiGene.Third-party medical writing assistance was provided by Ghina Yaacoub,MSc,of Ashfield MedComms,an Inizio Company,and funded by BeiGene.
文摘Objective:The open-label,phase II RATIONALE-209 study evaluated tislelizumab(anti-programmed cell death protein 1 antibody)as a tissue-agnostic monotherapy for microsatellite instability-high(MSI-H)/mismatch repair-deficient(dMMR)tumors.Methods:Adults with previously treated,locally advanced unresectable or metastatic MSI-H/dMMR solid tumors were enrolled.Patients received tislelizumab 200 mg intravenously every 3 weeks.Objective response rate(ORR;primary endpoint),duration of response(DoR),and progression-free survival(PFS)were assessed by independent review committee(Response Evaluation Criteria in Solid Tumors v1.1).Results:Eighty patients were enrolled and treated;75(93.8%)patients had measurable disease at baseline.Most had metastatic disease and received at least one prior therapy for advanced/metastatic disease(n=79;98.8%).At primary analysis(data cutoff July 8,2021;median follow-up 15.2 months),overall ORR[46.7%;95%confidence interval(95%CI),35.1−58.6;one-sided P<0.0001]and ORR across tumor-specific subgroups[colorectal(n=46):39.1%(95%CI,25.1–54.6);gastric/gastroesophageal junction(n=9):55.6%(95%CI,21.2−86.3);others(n=20):60.0%(95%CI,36.1−80.9)]were significantly greater with tislelizumab vs.a prespecified historical control ORR of 10%;five(6.7%)patients had complete responses.Median DoR,PFS,and overall survival were not reached with long-term follow-up(data cutoff December 5,2022;median follow-up 28.9 months).Tislelizumab was well tolerated with no unexpected safety signals.Treatment-related adverse events(TRAEs)of grade≥3 occurred in 53.8%of patients;7.5%of patients discontinued treatment due to TRAEs.Conclusions:Tislelizumab demonstrated a significant ORR improvement in patients with previously treated,locally advanced unresectable or metastatic MSI-H/dMMR tumors and was generally well tolerated.
基金financially supported by the National Natural Science Foundation of China(22179145,22138013,and 21975287)Shandong Provincial Natural Science Foundation(ZR2020ZD08)+1 种基金Taishan Scholar Project(no.ts201712020)the startup support grant from China University of Petroleum(East China)
文摘Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.