Vascular calcification is a crucial risk factor that affects the incidence and mortality of cardiovascular disease in chronic kidney disease patients.Modern medicine relies on calcium-phosphorus binding agents,calcium...Vascular calcification is a crucial risk factor that affects the incidence and mortality of cardiovascular disease in chronic kidney disease patients.Modern medicine relies on calcium-phosphorus binding agents,calcium mimetics,active vitamin D,and hemodialysis to prevent and treat vascular calcification,however,their efficacy is unsatisfactory and adverse reactions often occur.Medical plant therapy can act as an integrative regulator in patients with chronic kidney disease-associated vascular calcification,which can significantly improve patients’symptoms,but its specific mechanism has not been fully elucidated yet.In this paper,we reviewed the domestic and international theoretical studies on the pathogenesis mechanism of chronic kidney disease-associated vascular calcification in recent years,summarized eight active ingredients of medicinal plants as well as four compound formulas for improving chronic kidney disease-associated vascular calcification,and explored the mechanism of action of herbal medicine,which will provide a new strategy for promoting the prevention and treatment of vascular calcification.展开更多
In the past few decades,acute kidney injury(AKI),characterized by an abrupt decrease in kidney filtration rate,has become a public health issue affecting between 1%and 15%of the population,which causes high morbidity ...In the past few decades,acute kidney injury(AKI),characterized by an abrupt decrease in kidney filtration rate,has become a public health issue affecting between 1%and 15%of the population,which causes high morbidity and death.There is mounting evidence that miRNAs are noncoding single-stranded RNAs with a short length of about 20 nucleotides and have been highly conserved through evolution.Through targeting mRNAs,miRNA may mediate intercellular communication during AKI’s physiological and pathological processes.It is interesting to note that natural products can improve AKI by regulating miRNA expression,which might represent a potentially innovative therapeutic strategy.This review aims at providing an overview of the new data obtained on miRNAs in the treatment and diagnosis of AKI,summarizing studies on natural products improving AKI through regulating miRNAs’expression;in the same time,it will shed new light on AKI risk biomarkers and therapeutic intervention as well.We summarized the roles of miRNAs involved in AKI progression or protection against renal injury in 32 articles;we found five natural products can improve AKI by regulating miRNA expression,which will potentially provide a reference for clinical treatment.Natural products might represent a potentially innovative therapeutic strategy;in the same time,miRNAs will shed new light on AKI risk biomarkers and therapeutic intervention.展开更多
In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of ...In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of the center manifolds and the associated canonical transformation are valuable tools for exploring the design space of libration point missions. This paper deals with the refinement of reduction to the center manifold procedure. In order to reduce the amount of calculation needed and avoid repetitive computation of the Poisson bracket, a modified method is presented. By using a polynomial optimization technique, the coordinate transformation is conducted more efficiently. In addition, an alternative way to do the canonical coordinate transformation is discussed, which complements the classical approach. Numerical simulation confirms that more accurate and efficient numerical exploration of the center manifold is made possible by using the refined method.展开更多
Although genome-wide association studies are widely used to mine genes for quantitative traits,the effects to be estimated are confounded,and the methodologies for detecting interactions are imperfect.To address these...Although genome-wide association studies are widely used to mine genes for quantitative traits,the effects to be estimated are confounded,and the methodologies for detecting interactions are imperfect.To address these issues,the mixed model proposed here first estimates the genotypic effects for AA,Aa,and aa,and the genotypic polygenic background replaces additive and dominance polygenic backgrounds.Then,the estimated genotypic effects are partitioned into additive and dominance effects using a one-way analysis of variance model.This strategy was further expanded to cover QTN-by-environment interactions(QEIs)and QTN-by-QTN interactions(QQIs)using the same mixed-model framework.Thus,a three-variance-component mixed model was integrated with our multi-locus random-SNP-effect mixed linear model(mrMLM)method to establish a new methodological framework,3VmrMLM,that detects all types of loci and estimates their effects.In Monte Carlo studies,3VmrMLM correctly detected all types of loci and almost unbiasedly estimated their effects,with high powers and accuracies and a low false positive rate.In re-analyses of 10 traits in 1439 rice hybrids,detection of 269 known genes,45 known gene-by-environment interactions,and 20 known gene-by-gene interactions strongly validated 3VmrMLM.Further analyses of known genes showed more small(67.49%),minor-allele-frequency(35.52%),and pleiotropic(30.54%)genes,with higher repeatability across datasets(54.36%)and more dominance loci.In addition,a heteroscedasticity mixed model in multiple environments and dimension reduction methods in quite a number of environments were developed to detect QEIs,and variable selection under a polygenic background was proposed for QQI detection.This study provides a new approach for revealing the genetic architecture of quantitative traits.展开更多
文摘Vascular calcification is a crucial risk factor that affects the incidence and mortality of cardiovascular disease in chronic kidney disease patients.Modern medicine relies on calcium-phosphorus binding agents,calcium mimetics,active vitamin D,and hemodialysis to prevent and treat vascular calcification,however,their efficacy is unsatisfactory and adverse reactions often occur.Medical plant therapy can act as an integrative regulator in patients with chronic kidney disease-associated vascular calcification,which can significantly improve patients’symptoms,but its specific mechanism has not been fully elucidated yet.In this paper,we reviewed the domestic and international theoretical studies on the pathogenesis mechanism of chronic kidney disease-associated vascular calcification in recent years,summarized eight active ingredients of medicinal plants as well as four compound formulas for improving chronic kidney disease-associated vascular calcification,and explored the mechanism of action of herbal medicine,which will provide a new strategy for promoting the prevention and treatment of vascular calcification.
文摘In the past few decades,acute kidney injury(AKI),characterized by an abrupt decrease in kidney filtration rate,has become a public health issue affecting between 1%and 15%of the population,which causes high morbidity and death.There is mounting evidence that miRNAs are noncoding single-stranded RNAs with a short length of about 20 nucleotides and have been highly conserved through evolution.Through targeting mRNAs,miRNA may mediate intercellular communication during AKI’s physiological and pathological processes.It is interesting to note that natural products can improve AKI by regulating miRNA expression,which might represent a potentially innovative therapeutic strategy.This review aims at providing an overview of the new data obtained on miRNAs in the treatment and diagnosis of AKI,summarizing studies on natural products improving AKI through regulating miRNAs’expression;in the same time,it will shed new light on AKI risk biomarkers and therapeutic intervention as well.We summarized the roles of miRNAs involved in AKI progression or protection against renal injury in 32 articles;we found five natural products can improve AKI by regulating miRNA expression,which will potentially provide a reference for clinical treatment.Natural products might represent a potentially innovative therapeutic strategy;in the same time,miRNAs will shed new light on AKI risk biomarkers and therapeutic intervention.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11403013 and 11672126)the Fundamental Research Funds for the Central Universities (Nos. 56XAA14093 and 56YAH12036)the Postdoctoral Foundation of Jiangsu Province (No. 1301029B)
文摘In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of the center manifolds and the associated canonical transformation are valuable tools for exploring the design space of libration point missions. This paper deals with the refinement of reduction to the center manifold procedure. In order to reduce the amount of calculation needed and avoid repetitive computation of the Poisson bracket, a modified method is presented. By using a polynomial optimization technique, the coordinate transformation is conducted more efficiently. In addition, an alternative way to do the canonical coordinate transformation is discussed, which complements the classical approach. Numerical simulation confirms that more accurate and efficient numerical exploration of the center manifold is made possible by using the refined method.
基金supported by the National Natural Science Foundation of China(32070557 and 31871242)the Fundamental Research Funds for the Central Universities(2662020ZKPY017)+1 种基金the Huazhong Agricultural University Scientific&Technological Self-Innovation Foundation(2014RC020)the State Key Laboratory of Cotton Biology Open Fund(CB2021B01).
文摘Although genome-wide association studies are widely used to mine genes for quantitative traits,the effects to be estimated are confounded,and the methodologies for detecting interactions are imperfect.To address these issues,the mixed model proposed here first estimates the genotypic effects for AA,Aa,and aa,and the genotypic polygenic background replaces additive and dominance polygenic backgrounds.Then,the estimated genotypic effects are partitioned into additive and dominance effects using a one-way analysis of variance model.This strategy was further expanded to cover QTN-by-environment interactions(QEIs)and QTN-by-QTN interactions(QQIs)using the same mixed-model framework.Thus,a three-variance-component mixed model was integrated with our multi-locus random-SNP-effect mixed linear model(mrMLM)method to establish a new methodological framework,3VmrMLM,that detects all types of loci and estimates their effects.In Monte Carlo studies,3VmrMLM correctly detected all types of loci and almost unbiasedly estimated their effects,with high powers and accuracies and a low false positive rate.In re-analyses of 10 traits in 1439 rice hybrids,detection of 269 known genes,45 known gene-by-environment interactions,and 20 known gene-by-gene interactions strongly validated 3VmrMLM.Further analyses of known genes showed more small(67.49%),minor-allele-frequency(35.52%),and pleiotropic(30.54%)genes,with higher repeatability across datasets(54.36%)and more dominance loci.In addition,a heteroscedasticity mixed model in multiple environments and dimension reduction methods in quite a number of environments were developed to detect QEIs,and variable selection under a polygenic background was proposed for QQI detection.This study provides a new approach for revealing the genetic architecture of quantitative traits.