期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides 被引量:1
1
作者 Changjian Yuan Xianglei Liu +8 位作者 Xinrui Wang Chao Song hangbin zheng Cheng Tian Ke Gao Nan Sun Zhixing Jiang Yimin Xuan Yulong Ding 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1290-1305,共16页
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe... Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously. 展开更多
关键词 Calcium looping(CaL) Solar thermochemical Energy storage Binary sulfate Fast reaction kinetics
下载PDF
Efficient solar-driven CO_(2)-to-fuel conversion via Ni/MgAlO_(x)@SiO_(2)nanocomposites at low temperature
2
作者 Xianglei Liu Yueyue Ling +8 位作者 Chen Sun Hang Shi hangbin zheng Chao Song Ke Gao Chunzhuo Dang Nan Sun Yimin Xuan Yulong Ding 《Fundamental Research》 CAS CSCD 2024年第1期131-139,共9页
Solar-driven CO_(2)-to-fuel conversion assisted by another major greenhouse gas CH_(4)is promising to concurrently tackle energy shortage and global warming problems.However,current techniques still suffer from drawba... Solar-driven CO_(2)-to-fuel conversion assisted by another major greenhouse gas CH_(4)is promising to concurrently tackle energy shortage and global warming problems.However,current techniques still suffer from drawbacks of low efficiency,poor stability,and low selectivity.Here,a novel nanocomposite composed of interconnected Ni/MgAlOx nanoflakes grown on SiO_(2)particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO_(2)-to-fuel conversion.An ultrahigh light-to-fuel efficiency up to 35.7%,high production rates of H_(2)(136.6 mmol min^(-1)g^(-1))and CO(148.2 mmol min^(-1)g^(-1)),excellent selectivity(H_(2)/CO ratio of 0.92),and good stability are reported simultaneously.These outstanding performances are attributed to strong metal-support interactions,improved CO_(2)absorption and activation,and decreased apparent activation energy under direct light illumination.MgAlO_(x)@SiO_(2)support helps to lower the activation energy of CH^(*) oxidation to CHO^(*) and improve the dissociation of CH_(4)to CH_(3)^(*) as confirmed by DFT calculations.Moreover,the lattice oxygen of MgAlO_(x) participates in the reaction and contributes to the removal of carbon deposition.This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency,high selectivity,and benign sustainability. 展开更多
关键词 Solar fuel CO_(2)reduction Dry reforming of methane Photothermocatalysis Stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部