Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was c...Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was conducted to test the hypotheses that increasing dietary phytase after an 18-day adaptation period:1)increases nutrient and energy digestibility;2)increases plasma P,plasma inositol,and bone ash of young pigs;and 3)demonstrates that maximum phytate degradation requires more phytase than maximum P digestibility.Results Data indicated that increasing inclusion of phytase[0,250,500,1,000,2,000,and 4,000 phytase units(FTU)/kg feed]in corn-soybean meal-based diets increased apparent ileal digestibility(AID)of Trp(quadratic;P<0.05),and of Lys and Thr(linear;P<0.05),and tended to increase AID of Met(linear;P<0.10).Increasing dietary phytase also increased AID and apparent total tract digestibility(ATTD)of Ca and P(quadratic;P<0.05)and increased ATTD of K and Na(linear;P<0.05),but phytase did not influence the ATTD of Mg or gross energy.Concentrations of plasma P and bone ash increased(quadratic;P<0.05),and plasma inositol also increased(linear;P<0.05)with increasing inclusion of phytase.Reduced concentrations of inositol phosphate(IP)6 and IP5(quadratic;P<0.05),reduced IP4 and IP3(linear;P<0.05),but increased inositol concentrations(linear;P<0.05)were observed in ileal digesta as dietary phytase increased.The ATTD of P was maximized if at least 1,200 FTU/kg were used,whereas more than 4,000 FTU/kg were needed to maximize inositol release.Conclusions Increasing dietary levels of phytase after an 18-day adaptation period increased phytate and IP ester degradation and inositol release in the small intestine.Consequently,increasing dietary phytase resulted in improved digestibility of Ca,P,K,Na,and the first 4 limiting amino acids,and in increased concentrations of bone ash and plasma P and inositol.In a corn-soybean meal diet,maximum inositol release requires approximately 3,200 FTU/kg more phytase than that required for maximum P digestibility.展开更多
A conventional diet based on corn and soybean meal fed to pigs is usually provided in a mash form and in most cases, processing other than grinding and mixing is not used. However, due to the high cost of energy in pi...A conventional diet based on corn and soybean meal fed to pigs is usually provided in a mash form and in most cases, processing other than grinding and mixing is not used. However, due to the high cost of energy in pig diets,use of high fiber ingredients such as soybean hulls, distillers dried grains with solubles, and wheat middlings has increased. High fiber concentrations in the diet usually results in reduced energy and nutrient digestibility due to the low capacity of pigs to digest fiber, which negatively impacts growth performance and carcass composition of the pigs. Feed processing technologies such as changes in grinding procedures, expansion, extrusion, pelleting, use of enzymes or chemical treatments may, however, be used to solubilize some of the cel ulose and hemicel ulose fractions that form the cel wal of plants in the ingredients, and therefore, increase nutrient availability. This may have a positive effect on energy digestibility, and therefore, also on pig growth performance and carcass composition, but effects of different feed technologies on the nutritional value of feed ingredients and diets fed to pigs are not fully understood. It has however, been demonstrated that reduced particle size of cereal grains usually results in increased digestibility of energy, primarily due to increased digestibility of starch. Extrusion or expansion of ingredients or diets may also increase energy digestibility and it appears that the increase is greater in high fiber diets than in diets with lower concentrations of fiber. Chemical treatments have not consistently improved energy or nutrient digestibility, but a number of different enzymes may be used to increase the digestibility of phosphorus, calcium, or energy. Thus, there are several opportunities for using feed technology to improve the nutritional value of diets fed to pigs.展开更多
In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) were used to determine effects of a novel bacterial 6-phytase and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) expressed in Aspe...In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) were used to determine effects of a novel bacterial 6-phytase and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1:0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2:0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, N J) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P 〈 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P 〈 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P〈 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P〈 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. in conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs展开更多
The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility (SID) of amino acids (AA) in corn distillers dried grains with solubles (DDGS) fed ...The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility (SID) of amino acids (AA) in corn distillers dried grains with solubles (DDGS) fed to growing pigs. The second objective was to develop regression equations that may be used to predict the concentration of SID AA in corn DDGS. A source of corn DDGS was divided into 4 batches that were either not autoclaved or autoclaved at 130℃ for 10, 20, or 30 min. Four diets containing DDGS from each of the 4 batches were formulated with DDGS being the only source of AA and CP in the diets. A N-free diet also was formulated and used to determine the basal endogenous losses of CP and AA. Ten growing pigs (initial BW: 53.5 + 3.9 kg) were surgically equipped with a T-cannula in the distal ileum and allotted to a replicated 5 x4 Youden square design with 5 diets and 4 periods in each square. The SID of CP decreased linearly (P〈 0.05) from 77.9% in non-autoclaved DDGS to 72.1, 66.1, and 68.5% in the DDGS samples that were autoclaved for 10, 20, or 30 min, respectively. The SID of lysine was quadratically reduced (P〈 0.05) from 66.8% in the non-autoclaved DDGS to 54.9, 55.3, and 51.9% in the DDGS autoclaved for 10, 20, or 30 min, respectively. The concentrations of SID Arginine, Histidine, Leucine, Lysine, Methionine, Phenylalanine, or Threonine may be best predicted by equations that include the concentration of acid detergent insoluble N in the model (r2 = 0.76, 0.68, 0.67, 0.84, 0.76, 0.73, or 0.54, respectively). The concentrations of SID Isoleucine and Valine were predicted (r2 = 0.58 and 0.54, respectively) by the Lysine:CP ratio, whereas the concentration of SID Tryptophan was predicted (r2 = 0.70) by the analyzed concentration of Tryptophan in DDGS. In conclusion, the SID of AA is decreased as a result of heat damage and the concentration of SID AA in heat-damaged DDGS may be predicted by regression equations developed in this experiment.展开更多
High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm ke...High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying.Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and finishing pigs.Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced.Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible energy(DE) and metabolizable energy(ME) are slightly less in full fat rice bran than in corn, but defatted rice bran contains less than 75 % of the DE and ME in corn. The concentration of crude protein is 15 to 18 % in rice bran and the protein has a high biological value and most amino acids are well digested by pigs. Inclusion of rice bran in diets fed to pigs has yielded variable results and based on current research it is recommended that inclusion levels are less than 25 to 30 % in diets for growing-finishing pigs, and less than 20 % in diets for weanling pigs.However, there is a need for additional research to determine the inclusion rates that may be used for both full fat and defatted rice bran.展开更多
The objective of this experiment was to determine the standardized ileal digestibility(SID) of amino acids(AA) in 3sources of distillers dried grains with solubles(DDGS) with different concentrations of fat.Twel...The objective of this experiment was to determine the standardized ileal digestibility(SID) of amino acids(AA) in 3sources of distillers dried grains with solubles(DDGS) with different concentrations of fat.Twelve growing barrows(initial body weight:76.1 ± 6.2 kg) were randomly allotted to a replicated 6×4 Youden square design with 6 diets and 4 periods.The fat content of the 3 sources of DDGS were 11.5,7.5,and 6.9%respectively.Diets contained 60%DDGS and fat concentration of the diets were 7.5,52,and 5.2%,respectively.Two additional diets containing the 2sources of DDGS with 75 and 6.9%fat were also formulated,and corn oil was added to these diets to increase the concentration of fat in the diets to levels that were calculated to be similar to the diet containing conventional DDGS with 11.5%fat.A N-free diet was also formulated to calculate endogenous losses of crude protein(CP) and AA from the pigs.Pigs were fed experimental diets during four 7-d periods.The first 5 d of each period were an adaptation period and ileal digesta were collected on d 6 and 7 of each period.The apparent ileal digestibililty(AID) and SID of CP and all indispensable AA,except AID Pro and SID of Trp,were greater(P 〈 0.01) in conventional DDGS than in the 2 sources of DDGS with reduced fat.Adding oil to the diets containing the 2 sources of DDGS with reduced fat did not consistently increase SID of AA.In conclusion,conventional DDGS has greater SID values for most AA compared with DDGS that contains less fat and inclusion of additional oil to diets containing low-fat DDGS does not increase AID or SID of AA.The lower AA digestibility in low-fat DDGS could not be overcome by the inclusion of additional fat to the diets.展开更多
基金support for this research from AB Vista,Marlborough,UK,is greatly appreciated。
文摘Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was conducted to test the hypotheses that increasing dietary phytase after an 18-day adaptation period:1)increases nutrient and energy digestibility;2)increases plasma P,plasma inositol,and bone ash of young pigs;and 3)demonstrates that maximum phytate degradation requires more phytase than maximum P digestibility.Results Data indicated that increasing inclusion of phytase[0,250,500,1,000,2,000,and 4,000 phytase units(FTU)/kg feed]in corn-soybean meal-based diets increased apparent ileal digestibility(AID)of Trp(quadratic;P<0.05),and of Lys and Thr(linear;P<0.05),and tended to increase AID of Met(linear;P<0.10).Increasing dietary phytase also increased AID and apparent total tract digestibility(ATTD)of Ca and P(quadratic;P<0.05)and increased ATTD of K and Na(linear;P<0.05),but phytase did not influence the ATTD of Mg or gross energy.Concentrations of plasma P and bone ash increased(quadratic;P<0.05),and plasma inositol also increased(linear;P<0.05)with increasing inclusion of phytase.Reduced concentrations of inositol phosphate(IP)6 and IP5(quadratic;P<0.05),reduced IP4 and IP3(linear;P<0.05),but increased inositol concentrations(linear;P<0.05)were observed in ileal digesta as dietary phytase increased.The ATTD of P was maximized if at least 1,200 FTU/kg were used,whereas more than 4,000 FTU/kg were needed to maximize inositol release.Conclusions Increasing dietary levels of phytase after an 18-day adaptation period increased phytate and IP ester degradation and inositol release in the small intestine.Consequently,increasing dietary phytase resulted in improved digestibility of Ca,P,K,Na,and the first 4 limiting amino acids,and in increased concentrations of bone ash and plasma P and inositol.In a corn-soybean meal diet,maximum inositol release requires approximately 3,200 FTU/kg more phytase than that required for maximum P digestibility.
文摘A conventional diet based on corn and soybean meal fed to pigs is usually provided in a mash form and in most cases, processing other than grinding and mixing is not used. However, due to the high cost of energy in pig diets,use of high fiber ingredients such as soybean hulls, distillers dried grains with solubles, and wheat middlings has increased. High fiber concentrations in the diet usually results in reduced energy and nutrient digestibility due to the low capacity of pigs to digest fiber, which negatively impacts growth performance and carcass composition of the pigs. Feed processing technologies such as changes in grinding procedures, expansion, extrusion, pelleting, use of enzymes or chemical treatments may, however, be used to solubilize some of the cel ulose and hemicel ulose fractions that form the cel wal of plants in the ingredients, and therefore, increase nutrient availability. This may have a positive effect on energy digestibility, and therefore, also on pig growth performance and carcass composition, but effects of different feed technologies on the nutritional value of feed ingredients and diets fed to pigs are not fully understood. It has however, been demonstrated that reduced particle size of cereal grains usually results in increased digestibility of energy, primarily due to increased digestibility of starch. Extrusion or expansion of ingredients or diets may also increase energy digestibility and it appears that the increase is greater in high fiber diets than in diets with lower concentrations of fiber. Chemical treatments have not consistently improved energy or nutrient digestibility, but a number of different enzymes may be used to increase the digestibility of phosphorus, calcium, or energy. Thus, there are several opportunities for using feed technology to improve the nutritional value of diets fed to pigs.
基金Financial support from DSM Nutritional Products,Parsippany,NJ,is appreciated
文摘In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) were used to determine effects of a novel bacterial 6-phytase and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1:0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2:0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, N J) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P 〈 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P 〈 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P〈 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P〈 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. in conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs
基金Financial support for this research from Enonik Industries AG,Rodenbacher Chaussee 4,63457,Hanau,Germany,is appreciated
文摘The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility (SID) of amino acids (AA) in corn distillers dried grains with solubles (DDGS) fed to growing pigs. The second objective was to develop regression equations that may be used to predict the concentration of SID AA in corn DDGS. A source of corn DDGS was divided into 4 batches that were either not autoclaved or autoclaved at 130℃ for 10, 20, or 30 min. Four diets containing DDGS from each of the 4 batches were formulated with DDGS being the only source of AA and CP in the diets. A N-free diet also was formulated and used to determine the basal endogenous losses of CP and AA. Ten growing pigs (initial BW: 53.5 + 3.9 kg) were surgically equipped with a T-cannula in the distal ileum and allotted to a replicated 5 x4 Youden square design with 5 diets and 4 periods in each square. The SID of CP decreased linearly (P〈 0.05) from 77.9% in non-autoclaved DDGS to 72.1, 66.1, and 68.5% in the DDGS samples that were autoclaved for 10, 20, or 30 min, respectively. The SID of lysine was quadratically reduced (P〈 0.05) from 66.8% in the non-autoclaved DDGS to 54.9, 55.3, and 51.9% in the DDGS autoclaved for 10, 20, or 30 min, respectively. The concentrations of SID Arginine, Histidine, Leucine, Lysine, Methionine, Phenylalanine, or Threonine may be best predicted by equations that include the concentration of acid detergent insoluble N in the model (r2 = 0.76, 0.68, 0.67, 0.84, 0.76, 0.73, or 0.54, respectively). The concentrations of SID Isoleucine and Valine were predicted (r2 = 0.58 and 0.54, respectively) by the Lysine:CP ratio, whereas the concentration of SID Tryptophan was predicted (r2 = 0.70) by the analyzed concentration of Tryptophan in DDGS. In conclusion, the SID of AA is decreased as a result of heat damage and the concentration of SID AA in heat-damaged DDGS may be predicted by regression equations developed in this experiment.
文摘High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying.Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and finishing pigs.Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced.Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible energy(DE) and metabolizable energy(ME) are slightly less in full fat rice bran than in corn, but defatted rice bran contains less than 75 % of the DE and ME in corn. The concentration of crude protein is 15 to 18 % in rice bran and the protein has a high biological value and most amino acids are well digested by pigs. Inclusion of rice bran in diets fed to pigs has yielded variable results and based on current research it is recommended that inclusion levels are less than 25 to 30 % in diets for growing-finishing pigs, and less than 20 % in diets for weanling pigs.However, there is a need for additional research to determine the inclusion rates that may be used for both full fat and defatted rice bran.
基金Financial support for this research from Poet Nutrition,Sioux Falls,SD,is appreciated
文摘The objective of this experiment was to determine the standardized ileal digestibility(SID) of amino acids(AA) in 3sources of distillers dried grains with solubles(DDGS) with different concentrations of fat.Twelve growing barrows(initial body weight:76.1 ± 6.2 kg) were randomly allotted to a replicated 6×4 Youden square design with 6 diets and 4 periods.The fat content of the 3 sources of DDGS were 11.5,7.5,and 6.9%respectively.Diets contained 60%DDGS and fat concentration of the diets were 7.5,52,and 5.2%,respectively.Two additional diets containing the 2sources of DDGS with 75 and 6.9%fat were also formulated,and corn oil was added to these diets to increase the concentration of fat in the diets to levels that were calculated to be similar to the diet containing conventional DDGS with 11.5%fat.A N-free diet was also formulated to calculate endogenous losses of crude protein(CP) and AA from the pigs.Pigs were fed experimental diets during four 7-d periods.The first 5 d of each period were an adaptation period and ileal digesta were collected on d 6 and 7 of each period.The apparent ileal digestibililty(AID) and SID of CP and all indispensable AA,except AID Pro and SID of Trp,were greater(P 〈 0.01) in conventional DDGS than in the 2 sources of DDGS with reduced fat.Adding oil to the diets containing the 2 sources of DDGS with reduced fat did not consistently increase SID of AA.In conclusion,conventional DDGS has greater SID values for most AA compared with DDGS that contains less fat and inclusion of additional oil to diets containing low-fat DDGS does not increase AID or SID of AA.The lower AA digestibility in low-fat DDGS could not be overcome by the inclusion of additional fat to the diets.