Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performan...Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performance of radiative cooling materials remains elusive,limiting insight into the underlying physics of their optical response and cooling efficacy.La_(2)O_(3)and HfO_(2),which represent rare earth and third/fourth subgroup inorganic oxides,respectively,show promise for radiative cooling applications.In this study,we used multiscale simulations to investigate the optical properties of La_(2)O_(3)and HfO_(2)across a broad spectrum.First-principles calculations revealed their dielectric functions and intrinsic refractive indices,and the results indicated that the slightly smaller bandgap of La_(2)O_(3)compared to HfO_(2)induces a higher refractive index in the solar band.Additionally,three-phonon scattering was found to provide more accurate infrared optical properties than two-phonon scattering,which enhanced the emissivity in the sky window.Monte Carlo simulations were also used to determine the macroscopic optical properties of La_(2)O_(3)and HfO_(2)coatings.Based on the simulated results,we identified that the particle size and particle volume fraction play a dominant role in the optical properties.Our findings underscore the potential of La_(2)O_(3)and HfO_(2)nanocomposites for environment-friendly cooling and offer a new approach for high-throughput screening of optical materials through multiscale simulations.展开更多
BACKGROUND:To investigate the prognostic value of the peripheral perfusion index(PPI)in patients with septic shock.METHODS:This prospective cohort study,conducted at the emergency intensive care unit of Peking Univers...BACKGROUND:To investigate the prognostic value of the peripheral perfusion index(PPI)in patients with septic shock.METHODS:This prospective cohort study,conducted at the emergency intensive care unit of Peking University People's Hospital,recruited 200 patients with septic shock between January 2023 and August 2023.These patients were divided into survival(n=84)and death(n=116)groups based on 28-day outcomes.Clinical evaluations included laboratory tests and clinical scores,with lactate and PPI values assessed upon admission to the emergency room and at 6 h and 12 h after admission.Risk factors associated with mortality were analyzed using univariate and multivariate Cox regression analyses.Receiver operator characteristic(ROC)curve was used to assess predictive performance.Mortality rates were compared,and Kaplan-Meier survival plots were created.RESULTS:Compared to the survival group,patients in the death group were older and had more severe liver damage and coagulation dysfunction,necessitating higher norepinephrine doses and increased fl uid replacement.Higher lactate levels and lower PPI levels at 0 h,6 h,and 12 h were observed in the death group.Multivariate Cox regression identifi ed prolonged prothrombin time(PT),decreased 6-h PPI and 12-h PPI as independent risk factors for death.The area under the curves for 6-h PPI and 12-h PPI were 0.802(95%CI 0.742-0.863,P<0.001)and 0.945(95%CI 0.915-0.974,P<0.001),respectively,which were superior to Glasgow Coma Scale(GCS),Sequential Organ Failure Assessment(SOFA)scores(0.864 and 0.928).Cumulative mortality in the low PPI groups at 6 h and 12 h was signifi cantly higher than in the high PPI groups(6-h PPI:77.52%vs.22.54%;12-h PPI:92.04%vs.13.79%,P<0.001).CONCLUSION:PPI may have value in predicting 28-day mortality in patients with septic shock.展开更多
背景与目的 LC-3和P62是参与自噬过程的两个重要蛋白,在许多恶性肿瘤中高表达并与预后有关。本研究的目的在于探讨自噬标记物LC-3、P62蛋白在非小细胞肺癌中的表达及其临床特征。方法应用免疫组化法检测66例非小细胞肺癌患者肿瘤组织中L...背景与目的 LC-3和P62是参与自噬过程的两个重要蛋白,在许多恶性肿瘤中高表达并与预后有关。本研究的目的在于探讨自噬标记物LC-3、P62蛋白在非小细胞肺癌中的表达及其临床特征。方法应用免疫组化法检测66例非小细胞肺癌患者肿瘤组织中LC-3和P62的表达情况,分析其表达状态与临床特征的关系。结果 LC-3在非小细胞肺癌组织中阳性表达率为40.9%(27/66),P62在非小细胞肺癌组织中阳性表达率为65.2%(43/66)。LC-3的阳性表达与患者的病理类型及转移情况明显相关(P<0.05);而P62的阳性表达与患者的病理类型,临床分期及淋巴结转移明显相关(P<0.05)。LC-3和P62的阳性表达与患者的性别、年龄和吸烟史无明显相关性(P>0.05)。LC-3与P62在非小细胞肺癌组织中的表达呈负相关性(rs=-0.0 6 5,P<0.0 0 1)。K a p l a n-M e i e r分析显示L C-3蛋白阳性表达的患者5年生存率明显高于阴性表达的患者(P<0.05),而P62蛋白的阳性表达确与患者的生存率无显著相关性。结论 LC-3和P62在非小细胞肺癌组织中呈现异常表达,提示自噬参与了非小细胞肺癌的发生及发展过程。展开更多
Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen...Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen evolution reaction(OER)due to their layered structure combined with versatile com-positions.Furthermore,reducing the thickness of platelet LDH crystals to nanometer or even molecular scale via cleavage or delamination provides an important clue to enhance the activity.In this review,recent progresses on rational design of LDH nanosheets are reviewed,including direct synthesis via traditional coprecipitation,homogeneous precipitation,and newly developed topochemical oxidation as well as chemical exfoliation of parent LDH crystals.In addition,diverse strategies are introduced to modulate their electrochemical activity by tuning the composition of host metal cations and intercalated counter-anions,and incorporating dopants,cavi-ties,and single atoms.In particular,hybridizing LDHs with conductive components or in situ growing them on conductive substrates to produce freestanding electrodes can further enhance their intrinsic catalytic activity.A brief discussion on future research directions and prospects is also summarized.展开更多
Aprotic lithium–oxygen batteries(LOBs)have been recognized as novel energy storage devices for their outstanding specific energy density,while the large discharge/charge overpotential is a tough barrier to be overcom...Aprotic lithium–oxygen batteries(LOBs)have been recognized as novel energy storage devices for their outstanding specific energy density,while the large discharge/charge overpotential is a tough barrier to be overcome.Here,hetero-structured MoS_(2)/ZnIn_(2)S_(4) nanosheets have been prepared to capture visible light and the generated charge carriers are utilized for promoting both the oxygen reduction reaction and the oxygen evolution reaction.With the light illumination in the discharge process,the abundant photo-inspired electrons serve as the reaction sites to promote the reduction of O_(2) into LiO_(2) which is finally deposited as Li_(2)O_(2).On the contrary,the generated holes in the valence band can contribute to the low oxidization potential of Li_(2)O_(2) during the charge process.It delivers a low charge potential of 3.29 V,with an excellent resulting energy efficiency of 96.7%,much superior to that of 69.2%in the dark condition.It is noted that the involvement of photoelectrons has influenced the growth of Li_(2)O_(2) films on the MoS_(2)/ZnIn_(2)S_(4) nanosheets through the surface-adsorption pathway.The insights from the theoretical calculation confirm that the photoelectrons favor the absorption of LiO_(2) and the formation of the Li_(2)O_(2) film through the surface route.Therefore,this paper provides a deeper understanding of the mechanism of photoinspired charge carriers in LOBs and will enable further exploration of photo-involved energy storage systems.展开更多
Sponge gourd(Luffa cylindrica)is an important cultivated vegetable and medicinal plant in the family Cucurbitaceae.In this study,a draft genome sequence of the sponge gourd inbred line P93075 was analyzed.Using Illumi...Sponge gourd(Luffa cylindrica)is an important cultivated vegetable and medicinal plant in the family Cucurbitaceae.In this study,a draft genome sequence of the sponge gourd inbred line P93075 was analyzed.Using Illumina,PacBio,and 10×Genomics sequencing techniques as well as new assembly techniques such as FALCON and chromatin interaction mapping(Hi-C),a chromosome-scale genome of approximately 656.19 Mb,with an N50 scaffold length of 48.76 Mb,was generated.From this assembly,25,508 protein-coding gene loci were identified,and 63.81%of the whole-genome consisted of transposable elements,which are major contributors to the expansion of the sponge gourd genome.According to a phylogenetic analysis of conserved genes,the sponge gourd lineage diverged from the bitter gourd lineage approximately 41.6 million years ago.Additionally,many genes that respond to biotic and abiotic stresses were found to be lineage specific or expanded in the sponge gourd genome,as demonstrated by the presence of 462 NBS-LRR genes,a much greater number than are found in the genomes of other cucurbit species;these results are consistent with the high stress resistance of sponge gourd.Collectively,our study provides insights into genome evolution and serves as a valuable reference for the genetic improvement of sponge gourd.展开更多
An Nd:YAG single pulse nanosecond laser of 532 nm wavelength with an 8 ns pulse width was projected on the soil samples collected from the campus of Bengbu College under 1 standard atmospheric pressure. Laser-induced ...An Nd:YAG single pulse nanosecond laser of 532 nm wavelength with an 8 ns pulse width was projected on the soil samples collected from the campus of Bengbu College under 1 standard atmospheric pressure. Laser-induced breakdown spectroscopy at different sample temperatures was achieved. The intensity and signal-to-noise ratio (SNR) changes of different characteristic spectral lines could be analyzed when the sample temperature changes.The evolution of plasma electron temperature and electron density with the sample temperature was analyzed through Boltzmann oblique line method and Stark broadening method.The cause of the radiation enhancement of laser-induced metal plasma was discussed. Experimental results demonstrated that the spectral intensity, SNR, the electron temperature and electron density of plasma are positively related to the sample temperature, and reach saturation at 100℃.展开更多
OBJECTIVE The chemokine-like receptor 1(CMKLR1,Chem R23) is a functional receptor for chemerin,the chemerin-derived nonapeptide(C9),and the amyloid β peptide 1-42(Aβ_(42)).Because these peptides share little sequenc...OBJECTIVE The chemokine-like receptor 1(CMKLR1,Chem R23) is a functional receptor for chemerin,the chemerin-derived nonapeptide(C9),and the amyloid β peptide 1-42(Aβ_(42)).Because these peptides share little sequence homology,studies were conducted to investigate their pharmacological properties and regulation at CMKLR1.METHODS Cells expressing CMKLR1 were incubated with Aβ_(42) before stimulation with a strong agonist,the C9 peptide.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using CMKLR1 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first intracellular loop(IL1).RESULTS Binding of both Aβ_(42) and the C9 peptide induced CMKLR1 internalization,but only the Aβ_(42)-induced receptor internalization involved clathrin-coated pits.Likewise,Aβ_(42) but not C9 stimulated β-arrestin 2 translocation to plasma membranes.A robust Ca^(2+)flux was observed following C9 stimulation,whereas Aβ_(42) was ineffective even at micromolar concentrations.Despite its low potency in calcium mobilization assay,Aβ_(42) was able to alter C9-induced Ca^(2+) flux in dose-dependent manner:a potentiation effect at 100 pmol·L^(-1) of Aβ_(42) was followed by a suppression at 10 nmol·L^(-1) and further potentiation at 1 μmol·L^(-1).This unusual and biphasic modulatory effect was also seen in the C9-induced ERK phosphorylation but the dose curve was opposite to that of Ca^(2+) flux and c AMP inhibition,suggesting a reciprocal regulatory mechanism.Intramolecular FRET assay confirmed that Aβ_(42) modulates CMKLR1 rather than its downstream signaling pathways.CONCLUSION These findings suggest Aβ_(42) as an allosteric modulator that can both positively and negatively regulate the activation state of CMKLR1 in a manner that differs from existing allosteric modulatory mechanisms.展开更多
OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated w...OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated with weak agonists,Aβ42 and Ac2-26,before stimulation with a strong agonist,WKYMVm.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using FPR2 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first or third intracellular loop(IL1 or IL3,respectively).RESULTS Aβ42 did not induce significant Ca^(2+) mobilization,but positively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction in a dose-variable manner within a narrow range of ligand concentrations.Treating FPR2-expressing cells with Ac2-26,a peptide with anti-inflammatory activity,negatively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction.Intramolecular FRET assay showed that stimulation of the receptor constructs with Aβ42 brought the C-terminal domain closer to IL1 but away from IL3.An opposite conformational change was induced by Ac2-26.The FPR2 conformation induced by Aβ42 corresponded to enhanced ERK phosphorylation and attenuated p38 MAPK phosphorylation,whereas Ac2-26 induced FPR2 conformational change corresponding to elevated p38 MAPK phosphorylation and reduced ERK phosphorylation.CONCLUSION Aβ42 and Ac2-26 induce different conformational changes in FPR2.These findings provide a structural basis for FPR2 mediation of inflammatory vs anti-inflammatory functions and identify a type of receptor modulation that differs from the classic positive and negative allosteric modulation.展开更多
Fringe projection profilometry(FPP)has been widely applied to non-contact three-dimensional measurement in industries owing to its high accuracy and speed.The point cloud,which is a measurement result of the FPP syste...Fringe projection profilometry(FPP)has been widely applied to non-contact three-dimensional measurement in industries owing to its high accuracy and speed.The point cloud,which is a measurement result of the FPP system,typically contains a large number of invalid points caused by the background,ambient light,shadows,and object edge regions.Research on noisy point detection and elimination has been conducted over the past two decades.However,existing invalid point removal methods are based on image intensity analysis and are only applicable to simple measurement backgrounds that are purely dark.In this paper,we propose a novel invalid point removal framework that consists of two aspects:(1)A convolutional neural network(CNN)is designed to segment the foreground from the background of different intensity conditions in FPP measurement circumstances to remove background points and the most discrete points in background regions.(2)A two-step method based on the fringe image intensity threshold and a bilateral filter is proposed to eliminate the small number of discrete points remaining after background segmentation caused by shadows and edge areas on objects.Experimental results verify that the proposed framework(1)can remove background points intelligently and accurately in different types of complex circumstances,and(2)performs excellently in discrete point detection from object regions.展开更多
Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transm...Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.展开更多
Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous...Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous scholars have conducted research on the loosening of threaded fasteners;however,comprehensive reviews on the loosening of threaded fasteners have been scarce.In this review article,we define loosening as a loss of preload and divide it into non-rotational and rotational loosening.The causes and mechanisms of non-rotational and rotational loosening are summarised.Some essential topics regarding loosening under transverse vibration have also attracted significant attention and have been investigated widely,including the loosening curve,critical condition of loosening,and influencing factors of loosening.The research carried out on these three topics is also summarised in this review.It is believed that our work will not only help new researchers quickly understand the state-of-the-art research on loosening,but also increase the knowledge of engineers on this critical subject.In the future,it is important to conduct more quantitative research on local slippage accumulation,and the relationship between local slippage accumulation and rotational loosening,which will have the potential to comprehensively unravel the loosening mechanism,and effectively guide the anti-loosening design of threaded fasteners.展开更多
Realizing the reduction of N2 to NH3 at low temperature and pressure is always the unremitting pursuit of scientists and then electrochemical nitrogen reduction reaction offers an intriguing alternative.Here,we develo...Realizing the reduction of N2 to NH3 at low temperature and pressure is always the unremitting pursuit of scientists and then electrochemical nitrogen reduction reaction offers an intriguing alternative.Here,we develop a feasible way,gamma irradiation,for constructing defective structure on the surface of WO3 nanosheets,which is clearly observed at the atomic scale by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).The abundant oxygen vacancies ensure WO3 nanosheets with a Faradaic efficiency of 23%at−0.3 V vs.RHE.Moreover,we start from the regulation of the surface state to suppress proton availability towards hydrogen evolution reaction(HER)on the active site and thus boost the selectivity of nitrogen reduction.展开更多
Recently,Li-CO_(2) battery has gradually become a research hotspot due to its high discharge capacity,energy density and environmental benefits.However,it has been an important problem for researchers because of its s...Recently,Li-CO_(2) battery has gradually become a research hotspot due to its high discharge capacity,energy density and environmental benefits.However,it has been an important problem for researchers because of its slow decomposition kinetics and difficult to generalize to practical application.Herein,we prepared copper polyphthalocyanine-carbon nanotubes composites(CuPPc-CNTs)by solvothermal in-situ polymerization of copper phthalocyanine on the surface of carbon nanotubes as cathode for reversible Li-CO_(2) batteries,which exhibits a high discharge capacity of 18,652.7 mAh·g^(-1) at current density of 100 mA·g^(-1),1.64 V polarization at 1,000 mA·g^(-1),and a stable cycles number of 160 is close to 1,630 h of charge-discharge process at 200 mA·g^(-1).Copper polyphthalocyanine has highly efficient copper single-atom catalytic sites with excellent CO_(2) adsorption and activation,while carbon nanotubes provide a conductive network.The synergistic effect of the two compounds enables it to have excellent catalytic activity.The density functional theory(DFT)calculation proved that the addition of copper polyphthalocyanine significantly improved the CO_(2) adsorption and activation process.This study provides an opportunity for the research of covalent organic polymers(COPs)single-atom catalyst in Li-CO_(2) battery field.展开更多
基金the National Natural Science Foundation of China(Grant Nos.U23A20565,52301194,and 52101178)the Shanghai Science and Technology Commission(Grant No.22511100400)+1 种基金the startup funding from Shanghai Jiao Tong University(Grant No.WH220405009)Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD15)for providing funding support for this research。
文摘Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming.However,a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performance of radiative cooling materials remains elusive,limiting insight into the underlying physics of their optical response and cooling efficacy.La_(2)O_(3)and HfO_(2),which represent rare earth and third/fourth subgroup inorganic oxides,respectively,show promise for radiative cooling applications.In this study,we used multiscale simulations to investigate the optical properties of La_(2)O_(3)and HfO_(2)across a broad spectrum.First-principles calculations revealed their dielectric functions and intrinsic refractive indices,and the results indicated that the slightly smaller bandgap of La_(2)O_(3)compared to HfO_(2)induces a higher refractive index in the solar band.Additionally,three-phonon scattering was found to provide more accurate infrared optical properties than two-phonon scattering,which enhanced the emissivity in the sky window.Monte Carlo simulations were also used to determine the macroscopic optical properties of La_(2)O_(3)and HfO_(2)coatings.Based on the simulated results,we identified that the particle size and particle volume fraction play a dominant role in the optical properties.Our findings underscore the potential of La_(2)O_(3)and HfO_(2)nanocomposites for environment-friendly cooling and offer a new approach for high-throughput screening of optical materials through multiscale simulations.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2020D01C236)
文摘BACKGROUND:To investigate the prognostic value of the peripheral perfusion index(PPI)in patients with septic shock.METHODS:This prospective cohort study,conducted at the emergency intensive care unit of Peking University People's Hospital,recruited 200 patients with septic shock between January 2023 and August 2023.These patients were divided into survival(n=84)and death(n=116)groups based on 28-day outcomes.Clinical evaluations included laboratory tests and clinical scores,with lactate and PPI values assessed upon admission to the emergency room and at 6 h and 12 h after admission.Risk factors associated with mortality were analyzed using univariate and multivariate Cox regression analyses.Receiver operator characteristic(ROC)curve was used to assess predictive performance.Mortality rates were compared,and Kaplan-Meier survival plots were created.RESULTS:Compared to the survival group,patients in the death group were older and had more severe liver damage and coagulation dysfunction,necessitating higher norepinephrine doses and increased fl uid replacement.Higher lactate levels and lower PPI levels at 0 h,6 h,and 12 h were observed in the death group.Multivariate Cox regression identifi ed prolonged prothrombin time(PT),decreased 6-h PPI and 12-h PPI as independent risk factors for death.The area under the curves for 6-h PPI and 12-h PPI were 0.802(95%CI 0.742-0.863,P<0.001)and 0.945(95%CI 0.915-0.974,P<0.001),respectively,which were superior to Glasgow Coma Scale(GCS),Sequential Organ Failure Assessment(SOFA)scores(0.864 and 0.928).Cumulative mortality in the low PPI groups at 6 h and 12 h was signifi cantly higher than in the high PPI groups(6-h PPI:77.52%vs.22.54%;12-h PPI:92.04%vs.13.79%,P<0.001).CONCLUSION:PPI may have value in predicting 28-day mortality in patients with septic shock.
文摘背景与目的 LC-3和P62是参与自噬过程的两个重要蛋白,在许多恶性肿瘤中高表达并与预后有关。本研究的目的在于探讨自噬标记物LC-3、P62蛋白在非小细胞肺癌中的表达及其临床特征。方法应用免疫组化法检测66例非小细胞肺癌患者肿瘤组织中LC-3和P62的表达情况,分析其表达状态与临床特征的关系。结果 LC-3在非小细胞肺癌组织中阳性表达率为40.9%(27/66),P62在非小细胞肺癌组织中阳性表达率为65.2%(43/66)。LC-3的阳性表达与患者的病理类型及转移情况明显相关(P<0.05);而P62的阳性表达与患者的病理类型,临床分期及淋巴结转移明显相关(P<0.05)。LC-3和P62的阳性表达与患者的性别、年龄和吸烟史无明显相关性(P>0.05)。LC-3与P62在非小细胞肺癌组织中的表达呈负相关性(rs=-0.0 6 5,P<0.0 0 1)。K a p l a n-M e i e r分析显示L C-3蛋白阳性表达的患者5年生存率明显高于阴性表达的患者(P<0.05),而P62蛋白的阳性表达确与患者的生存率无显著相关性。结论 LC-3和P62在非小细胞肺癌组织中呈现异常表达,提示自噬参与了非小细胞肺癌的发生及发展过程。
基金supported in part by the WPIMANA,Ministry of Education,Culture,Sports,Science and TechnologyCREST of the Japan Science and Technology Agency(JST)(Grant No.JPMJCR17N1)the support from JSPS KAKENNHI grant 15H02004 and 18H03869.
文摘Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen evolution reaction(OER)due to their layered structure combined with versatile com-positions.Furthermore,reducing the thickness of platelet LDH crystals to nanometer or even molecular scale via cleavage or delamination provides an important clue to enhance the activity.In this review,recent progresses on rational design of LDH nanosheets are reviewed,including direct synthesis via traditional coprecipitation,homogeneous precipitation,and newly developed topochemical oxidation as well as chemical exfoliation of parent LDH crystals.In addition,diverse strategies are introduced to modulate their electrochemical activity by tuning the composition of host metal cations and intercalated counter-anions,and incorporating dopants,cavi-ties,and single atoms.In particular,hybridizing LDHs with conductive components or in situ growing them on conductive substrates to produce freestanding electrodes can further enhance their intrinsic catalytic activity.A brief discussion on future research directions and prospects is also summarized.
基金China Postdoctoral Science Foundation,Grant/Award Number:2019M661825Natural Science Foundation of Jiangsu Province,Grant/Award Numbers:BK20190413,BK20210616Japan Society。
文摘Aprotic lithium–oxygen batteries(LOBs)have been recognized as novel energy storage devices for their outstanding specific energy density,while the large discharge/charge overpotential is a tough barrier to be overcome.Here,hetero-structured MoS_(2)/ZnIn_(2)S_(4) nanosheets have been prepared to capture visible light and the generated charge carriers are utilized for promoting both the oxygen reduction reaction and the oxygen evolution reaction.With the light illumination in the discharge process,the abundant photo-inspired electrons serve as the reaction sites to promote the reduction of O_(2) into LiO_(2) which is finally deposited as Li_(2)O_(2).On the contrary,the generated holes in the valence band can contribute to the low oxidization potential of Li_(2)O_(2) during the charge process.It delivers a low charge potential of 3.29 V,with an excellent resulting energy efficiency of 96.7%,much superior to that of 69.2%in the dark condition.It is noted that the involvement of photoelectrons has influenced the growth of Li_(2)O_(2) films on the MoS_(2)/ZnIn_(2)S_(4) nanosheets through the surface-adsorption pathway.The insights from the theoretical calculation confirm that the photoelectrons favor the absorption of LiO_(2) and the formation of the Li_(2)O_(2) film through the surface route.Therefore,this paper provides a deeper understanding of the mechanism of photoinspired charge carriers in LOBs and will enable further exploration of photo-involved energy storage systems.
基金funded by the National Natural Science Foundation of China(31872093,31401865,31902011)the Science and Technology Program of Guangdong Province(2018B020202007,2019KJ110,2019A050507003,2019A050520002,2019A1515010723),the Science and Technology Program of Guangzhou of China(201807010033)the National Modern Agricultural Technology System Construction Project(CARS-25-G-36).
文摘Sponge gourd(Luffa cylindrica)is an important cultivated vegetable and medicinal plant in the family Cucurbitaceae.In this study,a draft genome sequence of the sponge gourd inbred line P93075 was analyzed.Using Illumina,PacBio,and 10×Genomics sequencing techniques as well as new assembly techniques such as FALCON and chromatin interaction mapping(Hi-C),a chromosome-scale genome of approximately 656.19 Mb,with an N50 scaffold length of 48.76 Mb,was generated.From this assembly,25,508 protein-coding gene loci were identified,and 63.81%of the whole-genome consisted of transposable elements,which are major contributors to the expansion of the sponge gourd genome.According to a phylogenetic analysis of conserved genes,the sponge gourd lineage diverged from the bitter gourd lineage approximately 41.6 million years ago.Additionally,many genes that respond to biotic and abiotic stresses were found to be lineage specific or expanded in the sponge gourd genome,as demonstrated by the presence of 462 NBS-LRR genes,a much greater number than are found in the genomes of other cucurbit species;these results are consistent with the high stress resistance of sponge gourd.Collectively,our study provides insights into genome evolution and serves as a valuable reference for the genetic improvement of sponge gourd.
基金supported by the National Natural Science Foundation of China(No.11604003)Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology(OMST201703)the Natural Science Foundations of Bengbu College(No.2017ZR11zd)
文摘An Nd:YAG single pulse nanosecond laser of 532 nm wavelength with an 8 ns pulse width was projected on the soil samples collected from the campus of Bengbu College under 1 standard atmospheric pressure. Laser-induced breakdown spectroscopy at different sample temperatures was achieved. The intensity and signal-to-noise ratio (SNR) changes of different characteristic spectral lines could be analyzed when the sample temperature changes.The evolution of plasma electron temperature and electron density with the sample temperature was analyzed through Boltzmann oblique line method and Stark broadening method.The cause of the radiation enhancement of laser-induced metal plasma was discussed. Experimental results demonstrated that the spectral intensity, SNR, the electron temperature and electron density of plasma are positively related to the sample temperature, and reach saturation at 100℃.
基金supported by National Natural Science Foundation of China(31470856 to RDY)the Science and Technology Development Fund of Macao(FDCT 072/2015/A2)the University of Macao(SRG2015-00047-ICMS-QRCM)
文摘OBJECTIVE The chemokine-like receptor 1(CMKLR1,Chem R23) is a functional receptor for chemerin,the chemerin-derived nonapeptide(C9),and the amyloid β peptide 1-42(Aβ_(42)).Because these peptides share little sequence homology,studies were conducted to investigate their pharmacological properties and regulation at CMKLR1.METHODS Cells expressing CMKLR1 were incubated with Aβ_(42) before stimulation with a strong agonist,the C9 peptide.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using CMKLR1 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first intracellular loop(IL1).RESULTS Binding of both Aβ_(42) and the C9 peptide induced CMKLR1 internalization,but only the Aβ_(42)-induced receptor internalization involved clathrin-coated pits.Likewise,Aβ_(42) but not C9 stimulated β-arrestin 2 translocation to plasma membranes.A robust Ca^(2+)flux was observed following C9 stimulation,whereas Aβ_(42) was ineffective even at micromolar concentrations.Despite its low potency in calcium mobilization assay,Aβ_(42) was able to alter C9-induced Ca^(2+) flux in dose-dependent manner:a potentiation effect at 100 pmol·L^(-1) of Aβ_(42) was followed by a suppression at 10 nmol·L^(-1) and further potentiation at 1 μmol·L^(-1).This unusual and biphasic modulatory effect was also seen in the C9-induced ERK phosphorylation but the dose curve was opposite to that of Ca^(2+) flux and c AMP inhibition,suggesting a reciprocal regulatory mechanism.Intramolecular FRET assay confirmed that Aβ_(42) modulates CMKLR1 rather than its downstream signaling pathways.CONCLUSION These findings suggest Aβ_(42) as an allosteric modulator that can both positively and negatively regulate the activation state of CMKLR1 in a manner that differs from existing allosteric modulatory mechanisms.
基金supported by National Natural Science Foundation of China(31470856 to RDY)the Science and Technology Development Fund of Macao(FDCT 072/2015/A2)the University of Macao(SRG2015-00047-ICMS-QRCM)
文摘OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated with weak agonists,Aβ42 and Ac2-26,before stimulation with a strong agonist,WKYMVm.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using FPR2 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first or third intracellular loop(IL1 or IL3,respectively).RESULTS Aβ42 did not induce significant Ca^(2+) mobilization,but positively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction in a dose-variable manner within a narrow range of ligand concentrations.Treating FPR2-expressing cells with Ac2-26,a peptide with anti-inflammatory activity,negatively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction.Intramolecular FRET assay showed that stimulation of the receptor constructs with Aβ42 brought the C-terminal domain closer to IL1 but away from IL3.An opposite conformational change was induced by Ac2-26.The FPR2 conformation induced by Aβ42 corresponded to enhanced ERK phosphorylation and attenuated p38 MAPK phosphorylation,whereas Ac2-26 induced FPR2 conformational change corresponding to elevated p38 MAPK phosphorylation and reduced ERK phosphorylation.CONCLUSION Aβ42 and Ac2-26 induce different conformational changes in FPR2.These findings provide a structural basis for FPR2 mediation of inflammatory vs anti-inflammatory functions and identify a type of receptor modulation that differs from the classic positive and negative allosteric modulation.
基金Supported by National Defense Basic Scientific Research Program of China(Grant No.JCKY2021602B032)。
文摘Fringe projection profilometry(FPP)has been widely applied to non-contact three-dimensional measurement in industries owing to its high accuracy and speed.The point cloud,which is a measurement result of the FPP system,typically contains a large number of invalid points caused by the background,ambient light,shadows,and object edge regions.Research on noisy point detection and elimination has been conducted over the past two decades.However,existing invalid point removal methods are based on image intensity analysis and are only applicable to simple measurement backgrounds that are purely dark.In this paper,we propose a novel invalid point removal framework that consists of two aspects:(1)A convolutional neural network(CNN)is designed to segment the foreground from the background of different intensity conditions in FPP measurement circumstances to remove background points and the most discrete points in background regions.(2)A two-step method based on the fringe image intensity threshold and a bilateral filter is proposed to eliminate the small number of discrete points remaining after background segmentation caused by shadows and edge areas on objects.Experimental results verify that the proposed framework(1)can remove background points intelligently and accurately in different types of complex circumstances,and(2)performs excellently in discrete point detection from object regions.
基金financially supported by the National Key R&D Program of China (No.2018YFC1106600)the Funding from the Industrial Transformation and Upgrading of Strong Base Project of China (No.TC150B5C0/03)
文摘Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.
基金The authors are grateful for support by the National Natural Science Foundation of China(Nos.51935003 and 51675050)the National Defense Fundamental Research Foundation of China(No.JCKY2016204B201)。
文摘Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous scholars have conducted research on the loosening of threaded fasteners;however,comprehensive reviews on the loosening of threaded fasteners have been scarce.In this review article,we define loosening as a loss of preload and divide it into non-rotational and rotational loosening.The causes and mechanisms of non-rotational and rotational loosening are summarised.Some essential topics regarding loosening under transverse vibration have also attracted significant attention and have been investigated widely,including the loosening curve,critical condition of loosening,and influencing factors of loosening.The research carried out on these three topics is also summarised in this review.It is believed that our work will not only help new researchers quickly understand the state-of-the-art research on loosening,but also increase the knowledge of engineers on this critical subject.In the future,it is important to conduct more quantitative research on local slippage accumulation,and the relationship between local slippage accumulation and rotational loosening,which will have the potential to comprehensively unravel the loosening mechanism,and effectively guide the anti-loosening design of threaded fasteners.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Nos.11575084 and 51602153)the Natural Science Foundation of Jiangsu Province(No.BK20160795)the Fundamental Research Funds for the Central Universities(No.NE2018104).The author also thank a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Realizing the reduction of N2 to NH3 at low temperature and pressure is always the unremitting pursuit of scientists and then electrochemical nitrogen reduction reaction offers an intriguing alternative.Here,we develop a feasible way,gamma irradiation,for constructing defective structure on the surface of WO3 nanosheets,which is clearly observed at the atomic scale by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).The abundant oxygen vacancies ensure WO3 nanosheets with a Faradaic efficiency of 23%at−0.3 V vs.RHE.Moreover,we start from the regulation of the surface state to suppress proton availability towards hydrogen evolution reaction(HER)on the active site and thus boost the selectivity of nitrogen reduction.
基金The authors acknowledge the financial support for this work from the Natural Science Foundation of Jiangsu Province(Nos.BK20190413 and BK20210616)the National Defense Technology Innovation Special Zone Spark Project(No.2016300TS00911901)+3 种基金the China Postdoctoral Science Foundation(No.2019M661825)the Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies(EEST2021-2)the Funding of Research and Practice Innovation Program in NUAA for Graduate Education(No.xcxjh20210605)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Recently,Li-CO_(2) battery has gradually become a research hotspot due to its high discharge capacity,energy density and environmental benefits.However,it has been an important problem for researchers because of its slow decomposition kinetics and difficult to generalize to practical application.Herein,we prepared copper polyphthalocyanine-carbon nanotubes composites(CuPPc-CNTs)by solvothermal in-situ polymerization of copper phthalocyanine on the surface of carbon nanotubes as cathode for reversible Li-CO_(2) batteries,which exhibits a high discharge capacity of 18,652.7 mAh·g^(-1) at current density of 100 mA·g^(-1),1.64 V polarization at 1,000 mA·g^(-1),and a stable cycles number of 160 is close to 1,630 h of charge-discharge process at 200 mA·g^(-1).Copper polyphthalocyanine has highly efficient copper single-atom catalytic sites with excellent CO_(2) adsorption and activation,while carbon nanotubes provide a conductive network.The synergistic effect of the two compounds enables it to have excellent catalytic activity.The density functional theory(DFT)calculation proved that the addition of copper polyphthalocyanine significantly improved the CO_(2) adsorption and activation process.This study provides an opportunity for the research of covalent organic polymers(COPs)single-atom catalyst in Li-CO_(2) battery field.