Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for t...Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.展开更多
Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulatio...Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.展开更多
Optical coherence tomography(OCT)imaging technology has significant advantages in in situ and noninvasive monitoring of biological tissues.However,it still faces the following challenges:including data processing spee...Optical coherence tomography(OCT)imaging technology has significant advantages in in situ and noninvasive monitoring of biological tissues.However,it still faces the following challenges:including data processing speed,image quality,and improvements in three-dimensional(3D)visualization effects.OCT technology,especially functional imaging techniques like optical coherence tomography angiography(OCTA),requires a long acquisition time and a large data size.Despite the substantial increase in the acquisition speed of swept source optical coherence tomography(SS-OCT),it still poses significant challenges for data processing.Additionally,during in situ acquisition,image artifacts resulting from interface reflections or strong reflections from biological tissues and culturing containers present obstacles to data visualization and further analysis.Firstly,a customized frequency domainfilter with anti-banding suppression parameters was designed to suppress artifact noises.Then,this study proposed a graphics processing unit(GPU)-based real-time data processing pipeline for SS-OCT,achieving a measured line-process rate of 800 kHz for 3D fast and high-quality data visualization.Furthermore,a GPU-based realtime data processing for CC-OCTA was integrated to acquire dynamic information.Moreover,a vascular-like network chip was prepared using extrusion-based 3D printing and sacrificial materials,with sacrificial material being printed at the desired vascular network locations and then removed to form the vascular-like network.OCTA imaging technology was used to monitor the progression of sacrificial material removal and vascular-like network formation.Therefore,GPU-based OCT enables real-time processing and visualization with artifact suppression,making it particularly suitable for in situ noninvasive longitudinal monitoring of 3D bioprinting tissue and vascular-like networks in microfluidic chips.展开更多
In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and ac...In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.展开更多
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
<b>Objectives:</b> Allogeneic myoblast transplantation (AMT), cyclosporine immunosuppression and coronary artery bypass grafting (CABG) were used to treat end-stage heart failure (HF) subjects without hope...<b>Objectives:</b> Allogeneic myoblast transplantation (AMT), cyclosporine immunosuppression and coronary artery bypass grafting (CABG) were used to treat end-stage heart failure (HF) subjects without hope of obtaining a heart transplant. <b>Background:</b> Severe myocardial infarction conveys serious complications such as ventricular aneurysm, wall thinning and rupture with fatal consequences. <b>Methods: </b>After meeting Inclusion/Exclusion criteria and signing Patient Informed Consents, 10 HF subjects having mean thinnest wall thickness of 2.21 ± 0.55 mm and ventricular aneurysms were admitted under intensive care. Each subject took daily cyclosporine for three weeks. On the third day of cyclosporine administration, approximately 1 billion myoblasts were implanted <span>through 20 injections into the infarcted myocardium following CABG. <b>Results: </b><u>Safety</u> No subject suffered death, viral infection, malignant arrhythmia, reduction in cardiac output, immune rejection, or aneurysm growth. No significant difference was found before versus after treatment in the mean levels of blood routine, liver and kidney enzymes, electrolytes and fibrinogen. <u>Efficacy</u> Emission computed tomography (ECT) and magnetic resonance (MR) demonstrated significant increases in viability and perfusion. Mean left ventricular ejection fraction (LVEF) significantly increased (P < 0.05) by 20.1% and 19.3% at 6 months and at 2 years postoperatively. New York Heart Association (NYHA) class improved by 2 grades, including 6-minute walk test (6 MWT) distance increase, and reductions in the number of episodes of angina pectoris, chest tightness, shortness of breath after exercise, and nighttime sit-up breathing. <b>Conclusions: </b>For the first time, AMT in adjunct use with CABG and cyclosporine demonstrated that cell survived and engrafted in patients with ischemic cardiomyopathy;in this small study the cell transplant was safe. The improvement in heart function and quality of life could be secondary to combined effect of bypass and cell transplant. A larger randomized clinical trial is required to confirm the efficacy.展开更多
Depression is closely linked to the morphology and functional abnormalities of multiple brain regions; however, its topological structure throughout the whole brain remains unclear. We col- lected resting-state functi...Depression is closely linked to the morphology and functional abnormalities of multiple brain regions; however, its topological structure throughout the whole brain remains unclear. We col- lected resting-state functional MRI data from 36 first-onset unmedicated depression patients and 27 healthy controls. The resting-state functional connectivity was constructed using the Auto- mated Anatomical Labeling template with a partial correlation method. The metrics calculation and statistical analysis were performed using complex network theory. The results showed that both depressive patients and healthy controls presented typical small-world attributes. Compared with healthy controls, characteristic path length was significantly shorter in depressive patients, suggesting development toward randomization. Patients with depression showed apparently abnormal node attributes at key areas in cortical-striatal-pallidal-thalamic circuits. In addition, right hippocampus and right thalamus were closely linked with the severity of depression. We se- lected 270 local attributes as the classification features and their P values were regarded as criteria for statistically significant differences. An artificial neural network algorithm was applied for classification research. The results showed that brain network metrics could be used as an effec- tive feature in machine learning research, which brings about a reasonable application prospect for brain network metrics. The present study also highlighted a significant positive correlation between the importance of the attributes and the intergroup differences; that is, the more sig- nificant the differences in node attributes, the stronger their contribution to the classification. Experimental findings indicate that statistical significance is an effective quantitative indicator of the selection of brain network metrics and can assist the clinical diagnosis of depression.展开更多
AIM:To discuss the impact of Lycium Barbarum Polysaccharide (LBP) and Danshensu purified from Traditional Chinese Medicine (TCM) on vascular endothelial growth factor (VEGF) of rabbits with retinal neovascularization....AIM:To discuss the impact of Lycium Barbarum Polysaccharide (LBP) and Danshensu purified from Traditional Chinese Medicine (TCM) on vascular endothelial growth factor (VEGF) of rabbits with retinal neovascularization. METHODS:Forty rabbits were divided into normal control group, model control group, LBP group and Danshensu group. Animals in the normal control group were fed in the normal oxygen environment. Animals in the other three groups were put into the environment with 70% oxygen for 5 days in order to build the model of oxygen-induced vascular proliferation retinopathy. And then different TCM extract was injected into the abdominal cavities of these annimals. After 7 days, the VEGF content of in the serum of rabbit was measured by double antibody sandwich method. RESULTS:Data analysis indicated that VEGF content was as follows:Danshensu group was lower than model control group (12.92 ±3.84ng/L vs 19.32 ±4.15ng/L, P 【 0.05); LBP group and normal control group were lower than model control group (12.92±3.84ng/L, 9.26±1.61ng/L vs 19.32±4.15ng/L, P【0.01); total blood viscosity, plasma viscosity, cholesterol content, fibrinogen content and triacylglycerol content after peritoneal injection of LBP and Danshensu were obviously lower than before injection. CONCLUSION:TCM extract-LBP and Danshensu can prominently reduce the content of VEGF in the process of vascular proliferative retinopathy of rabbit; can prevent the occurrence of retinal microvascular disease by improving partial oxygen -deficient environment or affecting all kinds of new growth factor.展开更多
Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, networ...Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations (nor- mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer's disease) using the Alzheimer's Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer's disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest- ing-state functional network gradually increased, while clustering coefficients gradually decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In addi- tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and AIz- heimer's disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventually lead to diffuse brain injury and other cognitive impairments.展开更多
The concentration and composition of nutrients,such as N,P,and Si,respond to biogeochemical processes and in turn,impact the phytoplanktons'community structure and primary production.In this study,historical data ...The concentration and composition of nutrients,such as N,P,and Si,respond to biogeochemical processes and in turn,impact the phytoplanktons'community structure and primary production.In this study,historical data was systematically analyzed to identify long-term variations in nutrient trends,red tide frequency,phytoplankton community abundance,and dominant species succession in the southern Yellow Sea(SYS).Results showed that N/P concentration ratios dramatically increased as a function of increasing dissolved inorganic nitrogen concentrations,and Si/N concentration ratios were generally larger than 1,indicating that N limitation morphed to P limitation and potentially to Si limitation,which impacted the phytoplankton community.Furthermore,inter-annual trends over the past 50 years show that phytoplankton community abundance has been higher in spring and summer,relative to autumn and winter.Moreover,with respect to red tide frequency,diatom abundance gradually decreased,while that of dinoflagellates gradually increased.Dominant species succession showed that the phytoplankton community exhibited an evident tendency to transform from diatoms to dinoflagellates.These research results clearly depict the presence of an important correlation between the phytoplankton community and nutrient structure in the SYS.展开更多
A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexani...A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexanitrohexaazaisowurtzitane(CL-20)as the main explosive.Then the explosive inkdirect writing technology was used to charge the micro-sized energetic devices,the curing mechanism of the explosive ink was discussed,and the microstructure,safety performance and explosive transfer performance of the explosive ink molded samples were tested and analyzed.Results indicate that the composite material has a fast curing molding speed,its hardness can reach 2H within 8 min.The crystal form of CL-20 in the molded sample is still type.The CL-20 based UV-curing explosive ink formulation has good compatibility,its apparent activation energy is increased by about 3.5 kj/mol.The composite presents a significant reduction in impact sensitivity and its characteristic drop height can reach 39.8 cm,whichis about 3 times higher than the raw material.When the line width of charge is 1.0 mm,the critical thickness of the explosion can reach 0.015 mm,and the explosion velocity is 7129 m/s when the charge density is 1.612 g/cm^(3).展开更多
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200sponsored by Tsinghua-Toyota Joint Research Fund+12 种基金in part by National Natural Science Foundation of China under Grant 62374099, Grant 62022047, Grant U20A20168, Grant 51861145202, Grant 51821003, and Grant 62175219in part by the National Key R&D Program under Grant 2016YFA0200400in part by Beijing Natural Science-Xiaomi Innovation Joint Fund Grant L233009in part supported by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT KF202204)in part by the Daikin-Tsinghua Union Programin part sponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Programin part by the Guoqiang Institute, Tsinghua Universityin part by the Research Fund from Beijing Innovation Center for Future Chipin part by Shanxi “1331 Project” Key Subjects Constructionin part by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019120)the opening fund of Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciencesin part by the project of MOE Innovation Platformin part by the State Key Laboratory of Integrated Chips and Systems
文摘Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.
基金This work was supported by the National Natural Science Foundation of China(82071779 and 81901626)the Science Fund for Creative Research Groups of Chongqing Municipal Education Commission of China,the grants from the Talent Foundation of Army Medical University(to Shuang-Shuang Dai)+1 种基金the Scientific Research Grant(ALJ22J003)the Chongqing Natural Science Foundation of China(CSTB2022NSCQ-MSX0177).
文摘Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1104600 and 2022YFA1200208)National Natural Science Foundation of China(No.31927801)Key Research and Development Foundation of Zhejiang Province(No.2022C01123).
文摘Optical coherence tomography(OCT)imaging technology has significant advantages in in situ and noninvasive monitoring of biological tissues.However,it still faces the following challenges:including data processing speed,image quality,and improvements in three-dimensional(3D)visualization effects.OCT technology,especially functional imaging techniques like optical coherence tomography angiography(OCTA),requires a long acquisition time and a large data size.Despite the substantial increase in the acquisition speed of swept source optical coherence tomography(SS-OCT),it still poses significant challenges for data processing.Additionally,during in situ acquisition,image artifacts resulting from interface reflections or strong reflections from biological tissues and culturing containers present obstacles to data visualization and further analysis.Firstly,a customized frequency domainfilter with anti-banding suppression parameters was designed to suppress artifact noises.Then,this study proposed a graphics processing unit(GPU)-based real-time data processing pipeline for SS-OCT,achieving a measured line-process rate of 800 kHz for 3D fast and high-quality data visualization.Furthermore,a GPU-based realtime data processing for CC-OCTA was integrated to acquire dynamic information.Moreover,a vascular-like network chip was prepared using extrusion-based 3D printing and sacrificial materials,with sacrificial material being printed at the desired vascular network locations and then removed to form the vascular-like network.OCTA imaging technology was used to monitor the progression of sacrificial material removal and vascular-like network formation.Therefore,GPU-based OCT enables real-time processing and visualization with artifact suppression,making it particularly suitable for in situ noninvasive longitudinal monitoring of 3D bioprinting tissue and vascular-like networks in microfluidic chips.
基金supported by National Natural Science Foundations of China(Nos.51977023 and 52077026)the Fundamental Research Funds for the Central Universities(No.DUT23YG227)。
文摘In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
文摘<b>Objectives:</b> Allogeneic myoblast transplantation (AMT), cyclosporine immunosuppression and coronary artery bypass grafting (CABG) were used to treat end-stage heart failure (HF) subjects without hope of obtaining a heart transplant. <b>Background:</b> Severe myocardial infarction conveys serious complications such as ventricular aneurysm, wall thinning and rupture with fatal consequences. <b>Methods: </b>After meeting Inclusion/Exclusion criteria and signing Patient Informed Consents, 10 HF subjects having mean thinnest wall thickness of 2.21 ± 0.55 mm and ventricular aneurysms were admitted under intensive care. Each subject took daily cyclosporine for three weeks. On the third day of cyclosporine administration, approximately 1 billion myoblasts were implanted <span>through 20 injections into the infarcted myocardium following CABG. <b>Results: </b><u>Safety</u> No subject suffered death, viral infection, malignant arrhythmia, reduction in cardiac output, immune rejection, or aneurysm growth. No significant difference was found before versus after treatment in the mean levels of blood routine, liver and kidney enzymes, electrolytes and fibrinogen. <u>Efficacy</u> Emission computed tomography (ECT) and magnetic resonance (MR) demonstrated significant increases in viability and perfusion. Mean left ventricular ejection fraction (LVEF) significantly increased (P < 0.05) by 20.1% and 19.3% at 6 months and at 2 years postoperatively. New York Heart Association (NYHA) class improved by 2 grades, including 6-minute walk test (6 MWT) distance increase, and reductions in the number of episodes of angina pectoris, chest tightness, shortness of breath after exercise, and nighttime sit-up breathing. <b>Conclusions: </b>For the first time, AMT in adjunct use with CABG and cyclosporine demonstrated that cell survived and engrafted in patients with ischemic cardiomyopathy;in this small study the cell transplant was safe. The improvement in heart function and quality of life could be secondary to combined effect of bypass and cell transplant. A larger randomized clinical trial is required to confirm the efficacy.
基金supported by the National Natural Science Foundation of China,No.61070077,61170136,61373101,81171290the Natural Science Foundation of Shanxi Province in China,No.2010011020-2,2011011015-4+3 种基金Programs for Science and Technology Social Development of Shanxi Province,No.20130313012-2Science and Technology Projects by Shanxi Provincial Ed-ucation Ministry,No.20121003Youth Fund by Taiyuan University of Technology,No.2012L014Youth Team Fund by Taiyuan University of Technology,No.2013T047
文摘Depression is closely linked to the morphology and functional abnormalities of multiple brain regions; however, its topological structure throughout the whole brain remains unclear. We col- lected resting-state functional MRI data from 36 first-onset unmedicated depression patients and 27 healthy controls. The resting-state functional connectivity was constructed using the Auto- mated Anatomical Labeling template with a partial correlation method. The metrics calculation and statistical analysis were performed using complex network theory. The results showed that both depressive patients and healthy controls presented typical small-world attributes. Compared with healthy controls, characteristic path length was significantly shorter in depressive patients, suggesting development toward randomization. Patients with depression showed apparently abnormal node attributes at key areas in cortical-striatal-pallidal-thalamic circuits. In addition, right hippocampus and right thalamus were closely linked with the severity of depression. We se- lected 270 local attributes as the classification features and their P values were regarded as criteria for statistically significant differences. An artificial neural network algorithm was applied for classification research. The results showed that brain network metrics could be used as an effec- tive feature in machine learning research, which brings about a reasonable application prospect for brain network metrics. The present study also highlighted a significant positive correlation between the importance of the attributes and the intergroup differences; that is, the more sig- nificant the differences in node attributes, the stronger their contribution to the classification. Experimental findings indicate that statistical significance is an effective quantitative indicator of the selection of brain network metrics and can assist the clinical diagnosis of depression.
基金National"Eleventh Five-year Plan"Science and Technology Support Project,China(No.2006BAI06A15-3)
文摘AIM:To discuss the impact of Lycium Barbarum Polysaccharide (LBP) and Danshensu purified from Traditional Chinese Medicine (TCM) on vascular endothelial growth factor (VEGF) of rabbits with retinal neovascularization. METHODS:Forty rabbits were divided into normal control group, model control group, LBP group and Danshensu group. Animals in the normal control group were fed in the normal oxygen environment. Animals in the other three groups were put into the environment with 70% oxygen for 5 days in order to build the model of oxygen-induced vascular proliferation retinopathy. And then different TCM extract was injected into the abdominal cavities of these annimals. After 7 days, the VEGF content of in the serum of rabbit was measured by double antibody sandwich method. RESULTS:Data analysis indicated that VEGF content was as follows:Danshensu group was lower than model control group (12.92 ±3.84ng/L vs 19.32 ±4.15ng/L, P 【 0.05); LBP group and normal control group were lower than model control group (12.92±3.84ng/L, 9.26±1.61ng/L vs 19.32±4.15ng/L, P【0.01); total blood viscosity, plasma viscosity, cholesterol content, fibrinogen content and triacylglycerol content after peritoneal injection of LBP and Danshensu were obviously lower than before injection. CONCLUSION:TCM extract-LBP and Danshensu can prominently reduce the content of VEGF in the process of vascular proliferative retinopathy of rabbit; can prevent the occurrence of retinal microvascular disease by improving partial oxygen -deficient environment or affecting all kinds of new growth factor.
基金sponsored by the National Natural Science Foundation of China,No.61070077,61170136,61373101the Natural Science Foundation of Shanxi Province,No.2011011015-4Beijing Postdoctoral Science Foundation,No.Q6002020201201
文摘Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer's disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations (nor- mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer's disease) using the Alzheimer's Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer's disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest- ing-state functional network gradually increased, while clustering coefficients gradually decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In addi- tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and AIz- heimer's disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventually lead to diffuse brain injury and other cognitive impairments.
文摘The concentration and composition of nutrients,such as N,P,and Si,respond to biogeochemical processes and in turn,impact the phytoplanktons'community structure and primary production.In this study,historical data was systematically analyzed to identify long-term variations in nutrient trends,red tide frequency,phytoplankton community abundance,and dominant species succession in the southern Yellow Sea(SYS).Results showed that N/P concentration ratios dramatically increased as a function of increasing dissolved inorganic nitrogen concentrations,and Si/N concentration ratios were generally larger than 1,indicating that N limitation morphed to P limitation and potentially to Si limitation,which impacted the phytoplankton community.Furthermore,inter-annual trends over the past 50 years show that phytoplankton community abundance has been higher in spring and summer,relative to autumn and winter.Moreover,with respect to red tide frequency,diatom abundance gradually decreased,while that of dinoflagellates gradually increased.Dominant species succession showed that the phytoplankton community exhibited an evident tendency to transform from diatoms to dinoflagellates.These research results clearly depict the presence of an important correlation between the phytoplankton community and nutrient structure in the SYS.
基金Equipment Development Department of China(61406190401).
文摘A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexanitrohexaazaisowurtzitane(CL-20)as the main explosive.Then the explosive inkdirect writing technology was used to charge the micro-sized energetic devices,the curing mechanism of the explosive ink was discussed,and the microstructure,safety performance and explosive transfer performance of the explosive ink molded samples were tested and analyzed.Results indicate that the composite material has a fast curing molding speed,its hardness can reach 2H within 8 min.The crystal form of CL-20 in the molded sample is still type.The CL-20 based UV-curing explosive ink formulation has good compatibility,its apparent activation energy is increased by about 3.5 kj/mol.The composite presents a significant reduction in impact sensitivity and its characteristic drop height can reach 39.8 cm,whichis about 3 times higher than the raw material.When the line width of charge is 1.0 mm,the critical thickness of the explosion can reach 0.015 mm,and the explosion velocity is 7129 m/s when the charge density is 1.612 g/cm^(3).