The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB...The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
Self-assembly of bacteria in electric fields is a promising route to fabricate biomaterials with reversible and specific structures.However,due to relatively less studies,our understanding of the self-assembly of bact...Self-assembly of bacteria in electric fields is a promising route to fabricate biomaterials with reversible and specific structures.However,due to relatively less studies,our understanding of the self-assembly of bacteria in electric fields is still incomplete.Particularly,how different bacterial species behave differently in their fieldmediated self-assembly behavior remains to be disclosed.In this study,we choose four bacterial species,including Shewanella oneidensis,Pseudomonas aeruginosa,Bacillus subtilis and Lactococcus lactis as model systems,and investigate their self-assembly behavior in alternating-current(AC)electric fields for both diluted and concentrated suspensions.The phase diagrams in the plane of applied field strength vs frequency are obtained.The results show that in diluted suspensions,a transition sequence of isotropic–paranematic–string–columnar phases is observed in all strains as the field strength increases.Details of the assembled structures are quantitatively differentiated among different strains.In concentrated suspensions,besides the isotropic and paranematic phases,a higher ordered phase with interdigitating rectangular crystal domains(OIR)and an ordered phase with smectic A liquid crystal domains are observed for S.oneidensis and P.aeruginosa,respectively.Our findings shed new light on fabricating potential biomaterials by assembling cells of appropriately chosen bacterial species that have desired surface properties under AC electric fields.展开更多
To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit att...To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.展开更多
Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and...Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and plentiful not only as natural gas, but also as biogas. Methanol can also maintain methanotrophic activity in some conditions. The methanotrophic strain Methylosinus trichosporium IMV3011 can accumulate PHB with methane and methanol in a brief nonsterile process. Liquid methanol (0.1%) was added to improve the oxidization of methane. The studies were carried out using shake flasks. Cultivation was performed in two stages: a continuous growth phase and a PHB accumulation phase under the conditions short of essential nutrients (ammonium, nitrate, phosphorus, copper, iron (Ⅲ), magnesium or ethylenediamine tetraacetate (EDTA)) in batch culture. It was found that the most suitable growth time for the cell is 144 h. Then an optimized culture condition for second stage was determined, in which the PHB concentration could be much increased to 0.6 g/L. In order to increase PHB content, citric acid was added as an inhibitor of tricarboxylic acid cycle (TCA). It was found that citric acid is favorable for the PHB accumulation, and the PHB yield was increased to 40% (w/w) from the initial yield of 12% (w/w) after nutrient deficiency cultivation. The PHB produced is of very high quality with molecular weight up to 1.5 × 10^6Da.展开更多
The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation te...The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation test.The results of the saponification reaction test indicated that the optimal conditions for the saponification were stirring rate of 55 r/min,initial temperature of 40℃ and stirring time of 45 min.Meanwhile,the laboratory scale and industrial scale flotation experiments showed that the fatty acid salt synthesized by wastewater achieved an index comparable to fatty acid sodium synthesized by sodium hydroxide.As a consequence,it was feasible to replace sodium hydroxide with the wastewater from zeolite production for fatty acid saponification.The cross-border utilization of waste alkali liquids not only reduced environmental pollution,but also produced excellent economic benefits.展开更多
Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to ...Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems.展开更多
Sulfur and lanthanum hydrides under compression display superconducting states with high observed critical temperatures.It has been recently demonstrated that carbonaceous sulfur hydride displays room temperature supe...Sulfur and lanthanum hydrides under compression display superconducting states with high observed critical temperatures.It has been recently demonstrated that carbonaceous sulfur hydride displays room temperature superconductivity.However,this phenomenon has been observed only at very high pressure.Here,we theoretically search for superconductors with very high critical temperatures,but at much lower pressures.We describe two of such sodalite-type clathrate hydrides,YbH6 and LuH6.These hydrides are metastable and are predicted to superconduct with T_(c)~145 K at 70 GPa and T_(c)~273 K at 100 GPa,respectively.This striking result is a consequence of the strong interrelationship between the f states present at the Fermi level,structural stability,and the final T_(c) value.For example,TmH6,with unfilled 4f orbitals,is stable at 50 GPa,but has a relatively low value of T_(c) of 25 K.The YbH6 and LuH6 compounds,with their filled f-shells,exhibit prominent phonon"softening",which leads to a strong electron-phonon coupling,and as a result,an increase in T_(c).展开更多
Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments.Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination.To dis...Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments.Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination.To distinguish and fight the pathogenic species out of the microflora,novel antimicrobials have been developed that selectively target specific bacteria and fungi.The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review.This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi.Finally,recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed.These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.展开更多
The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clos...The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clostridium ljungdahlii(ClFDH)adsorbed on electrodes displays clear characteristic voltammetric signals that can be assigned to the reduction and oxidation potential of the[4Fe-4S]^(2+/+)cluster under nonturnover conditions.Upon adding substrates,the signals transform into a specific redox center that engages in catalytic electron transport.ClFDH catalyzes rapid and efficient reversible interconversion between CO_(2) and formate in the presence of substrates.The turnover frequency of electrochemical CO_(2) reduction is determined as 1210 s^(-1) at 25℃ and pH 7.0,which can be further enhanced up to 1786 s^(-1) at 50℃.The Faradaic efficiency at−0.6 V(vs.standard hydrogen electrode)is recorded as 99.3%in a 2-h reaction.Inhibition experiments and theoretical modeling disclose interesting pathways for CO_(2) entry,formate exit,and OCN−competition,suggesting an oxidation-state-dependent binding mechanism of catalysis.Our results provide a different perspective for understanding the catalytic mechanism of FDH and original insights into the design of synthetic catalysts.展开更多
Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells(MFCs).However,electrode materials currently suffer from a series of shortcomings th...Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells(MFCs).However,electrode materials currently suffer from a series of shortcomings that limit the output of MFCs,such as high intrinsic resistance,poor electrolyte wettability,and low microbial load capacity.Here,a three-dimensional(3D)nitrogen-doped multiwalled carbon nanotube/graphene(N-MWCNT/GA)composite aerogel is synthesized as the anode for MFCs.Comparing nitrogen-doped GA,MWCNT/GA,and N-MWCNT/GA,the macroporous hydrophilic N-MWCNT/GA electrode with an average pore size of 4.24μm enables high-density loading of the microbes and facilitates extracellular electron transfer with low intrinsic resistance.Consequently,the hydrophilic surface of N-MWCNT can generate high charge mobility,enabling a high-power output performance of the MFC.In consequence,the MFC system based on N-MWCNT/GA anode exhibits a peak power density and output voltage of 2977.8 mW m^(−2)and 0.654 V,which are 1.83 times and 16.3%higher than those obtained with MWCNT/GA,respectively.These results demonstrate that 3D N-MWCNT/GA anodes can be developed for high-power MFCs in different environments by optimizing their chemical and microstructures.展开更多
The low catalytic efficiency of redox-active cofactor photoregeneration severely limits the performance of photoenzymatic hybrid systems. Herein, we synthesized thiophene-conjugated porous C3N4 nanosheets(CN-ATCN) exh...The low catalytic efficiency of redox-active cofactor photoregeneration severely limits the performance of photoenzymatic hybrid systems. Herein, we synthesized thiophene-conjugated porous C3N4 nanosheets(CN-ATCN) exhibiting boosted photoregeneration activity of nicotinamide cofactors(NADH and NADPH), which are the most common redox cofactors of oxidoreductases, with regeneration rates of 59.00 μM/min for NADH and 40.99 μM/min for NADPH, ~ 84.3 and 24.7 times higher than those of bulk g-C3N4, respectively. The thin nanosheet structure of CN-ATCN facilitates the exposure of active sites to reactants and favors the diff usion of reactants and products. Upon conjugation of a thiophene moiety into the carbon nitride framework, the optical and photoelectric properties of CN-ATCN were considerably enhanced by an extended π-conjugation system in the frameworks and molecular type II heterojunctions formed between the incorporated and nonincorporated portions of CN-ATCN. Upon coupling NAD(P)H photoregeneration reaction by CN-ATCN with NAD(P)H-dependent enzymatic systems, sustainable synthesis of L-tert-leucine and styrene oxide was achieved with rates of 964 and 14.9 μM/h, respectively.展开更多
Recently,room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure[Dasenbrock-Gammon et al.,Nature 615,244(2023)].The superconducting properties might arise fro...Recently,room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure[Dasenbrock-Gammon et al.,Nature 615,244(2023)].The superconducting properties might arise from Fm3m-LuH_(3)−δNε.Here,we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations,and we do not find any thermodynamically stable ternary compounds.In addition,we calculate the dynamic stability and superconducting properties of N-doped Fm3m-LuH_(3) using the virtual crystal approximation(VCA)and the supercell method.The R3m-Lu_(2)H_(5)N predicted using the supercell method could be dynamically stable at 50 GPa,with a T_(c) of 27 K.According to the VCA method,the highest T_(c) is 22 K,obtained with 1%N-doping at 30 GPa.Moreover,the doping of nitrogen atoms into Fm3m-LuH_(3) slightly enhances T_(c),but raises the dynamically stable pressure.Our theoretical results show that the T_(c) values of N-doped LuH_(3) estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.展开更多
To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is propose...To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is proposed.The micro-rolling leads to equiaxed prior β grains,thin discontinuous intergranular α,and equiaxed primary α,in contrast to the coarse columnar prior β grains without the application of micro-rolling.The recrystallization by micro-rolling results in discontinuous intergranular α via the mechanism of strain and interface-induced grain boundary migration.The evolution of α globularization,driven by a solute concentration gradient,starts from the sub-boundary until the formation of equiaxed primary α.Simultaneous strengthening and toughening are achieved,which means an increase in yield strength,ultimate tensile strength,fracture elongation,and work hardening rate.The formation of α recrystallization leads to more fine grain boundaries to strengthen the yield strength,and the improvement of ductility is due to the better-coordinated deformation ability of discontinuous intergranular α and equiaxed primary α.As a result,the fracture mode in micro-rolling changes from intergranular type to transgranular type.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51904339 and No.51974364)the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China (No.2018TP1002)the Co-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources,and the Postgraduate Independent Exploration and Innovation Project of Central South University,China (No.2018zzts224)。
文摘The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
基金supported by the National Key R&D Program of China(Grant No.2023YFC3402401)the National Natural Science Foundation of China(Grant No.12374206)。
文摘Self-assembly of bacteria in electric fields is a promising route to fabricate biomaterials with reversible and specific structures.However,due to relatively less studies,our understanding of the self-assembly of bacteria in electric fields is still incomplete.Particularly,how different bacterial species behave differently in their fieldmediated self-assembly behavior remains to be disclosed.In this study,we choose four bacterial species,including Shewanella oneidensis,Pseudomonas aeruginosa,Bacillus subtilis and Lactococcus lactis as model systems,and investigate their self-assembly behavior in alternating-current(AC)electric fields for both diluted and concentrated suspensions.The phase diagrams in the plane of applied field strength vs frequency are obtained.The results show that in diluted suspensions,a transition sequence of isotropic–paranematic–string–columnar phases is observed in all strains as the field strength increases.Details of the assembled structures are quantitatively differentiated among different strains.In concentrated suspensions,besides the isotropic and paranematic phases,a higher ordered phase with interdigitating rectangular crystal domains(OIR)and an ordered phase with smectic A liquid crystal domains are observed for S.oneidensis and P.aeruginosa,respectively.Our findings shed new light on fabricating potential biomaterials by assembling cells of appropriately chosen bacterial species that have desired surface properties under AC electric fields.
基金Supported by Youth Project of Natural Science Foundation of Anhui Province(2008085QC135)Postdoctoral Workstation Project of West Anhui University(WXBSH2020003)+4 种基金Key Program of Natural Science Research Project for Anhui Universities(KJ2021A0954)Forestry Carbon Sequestration Self-funded Science and Technology Project of Anhui Province(LJH[2022]267)Subject of Lu'an Forestry Bureau(0045021093)School-level Quality Engineering Project of West Anhui University(wxxy2021017)Provincial Quality Engineering Project of West Anhui University(2022jyxm1765).
文摘To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.
基金New Century Excellent Talents in University of China(NCET-05-0358)the National Natural Science Foundation of China(20625308)
文摘Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and plentiful not only as natural gas, but also as biogas. Methanol can also maintain methanotrophic activity in some conditions. The methanotrophic strain Methylosinus trichosporium IMV3011 can accumulate PHB with methane and methanol in a brief nonsterile process. Liquid methanol (0.1%) was added to improve the oxidization of methane. The studies were carried out using shake flasks. Cultivation was performed in two stages: a continuous growth phase and a PHB accumulation phase under the conditions short of essential nutrients (ammonium, nitrate, phosphorus, copper, iron (Ⅲ), magnesium or ethylenediamine tetraacetate (EDTA)) in batch culture. It was found that the most suitable growth time for the cell is 144 h. Then an optimized culture condition for second stage was determined, in which the PHB concentration could be much increased to 0.6 g/L. In order to increase PHB content, citric acid was added as an inhibitor of tricarboxylic acid cycle (TCA). It was found that citric acid is favorable for the PHB accumulation, and the PHB yield was increased to 40% (w/w) from the initial yield of 12% (w/w) after nutrient deficiency cultivation. The PHB produced is of very high quality with molecular weight up to 1.5 × 10^6Da.
基金Projects(51604302,51574282)supported by the National Natural Science Foundation of ChinaProject(2016RS2016)supported by the Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),China+1 种基金Project(2018zzts224)supported by the Postgraduate Independent Exploration and Innovation Project of Central South University,ChinaProject(2018TP1002)supported by the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources,China。
文摘The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation test.The results of the saponification reaction test indicated that the optimal conditions for the saponification were stirring rate of 55 r/min,initial temperature of 40℃ and stirring time of 45 min.Meanwhile,the laboratory scale and industrial scale flotation experiments showed that the fatty acid salt synthesized by wastewater achieved an index comparable to fatty acid sodium synthesized by sodium hydroxide.As a consequence,it was feasible to replace sodium hydroxide with the wastewater from zeolite production for fatty acid saponification.The cross-border utilization of waste alkali liquids not only reduced environmental pollution,but also produced excellent economic benefits.
文摘Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12122405,51632002,and 11974133)the Program for Changjiang Scholars and Innovative Research Team in Universities(Grant No.IRT 15R23)+1 种基金financial support from the Engineering and Physical Sciences Research Council(Grant No.EP/P022596/1)。
文摘Sulfur and lanthanum hydrides under compression display superconducting states with high observed critical temperatures.It has been recently demonstrated that carbonaceous sulfur hydride displays room temperature superconductivity.However,this phenomenon has been observed only at very high pressure.Here,we theoretically search for superconductors with very high critical temperatures,but at much lower pressures.We describe two of such sodalite-type clathrate hydrides,YbH6 and LuH6.These hydrides are metastable and are predicted to superconduct with T_(c)~145 K at 70 GPa and T_(c)~273 K at 100 GPa,respectively.This striking result is a consequence of the strong interrelationship between the f states present at the Fermi level,structural stability,and the final T_(c) value.For example,TmH6,with unfilled 4f orbitals,is stable at 50 GPa,but has a relatively low value of T_(c) of 25 K.The YbH6 and LuH6 compounds,with their filled f-shells,exhibit prominent phonon"softening",which leads to a strong electron-phonon coupling,and as a result,an increase in T_(c).
文摘Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments.Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination.To distinguish and fight the pathogenic species out of the microflora,novel antimicrobials have been developed that selectively target specific bacteria and fungi.The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review.This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi.Finally,recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed.These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.
基金support from the National Key Research and Development Program of China (No.2020YFA0907300)the National Natural Science Foundation of China (No.22077069)+1 种基金the Natural Science Foundation of Tianjin (19JCZDJC33400)the Fundamental Research Funds for the Central Universities,Nankai University (63201111).
文摘The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clostridium ljungdahlii(ClFDH)adsorbed on electrodes displays clear characteristic voltammetric signals that can be assigned to the reduction and oxidation potential of the[4Fe-4S]^(2+/+)cluster under nonturnover conditions.Upon adding substrates,the signals transform into a specific redox center that engages in catalytic electron transport.ClFDH catalyzes rapid and efficient reversible interconversion between CO_(2) and formate in the presence of substrates.The turnover frequency of electrochemical CO_(2) reduction is determined as 1210 s^(-1) at 25℃ and pH 7.0,which can be further enhanced up to 1786 s^(-1) at 50℃.The Faradaic efficiency at−0.6 V(vs.standard hydrogen electrode)is recorded as 99.3%in a 2-h reaction.Inhibition experiments and theoretical modeling disclose interesting pathways for CO_(2) entry,formate exit,and OCN−competition,suggesting an oxidation-state-dependent binding mechanism of catalysis.Our results provide a different perspective for understanding the catalytic mechanism of FDH and original insights into the design of synthetic catalysts.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51803151,51973152,51773147,52173078,52130303,51973158)the State Key Program of National Natural Science Foundation of China(No.51633007)the Seed Foundation of Tianjin University(No.2105018).
文摘Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells(MFCs).However,electrode materials currently suffer from a series of shortcomings that limit the output of MFCs,such as high intrinsic resistance,poor electrolyte wettability,and low microbial load capacity.Here,a three-dimensional(3D)nitrogen-doped multiwalled carbon nanotube/graphene(N-MWCNT/GA)composite aerogel is synthesized as the anode for MFCs.Comparing nitrogen-doped GA,MWCNT/GA,and N-MWCNT/GA,the macroporous hydrophilic N-MWCNT/GA electrode with an average pore size of 4.24μm enables high-density loading of the microbes and facilitates extracellular electron transfer with low intrinsic resistance.Consequently,the hydrophilic surface of N-MWCNT can generate high charge mobility,enabling a high-power output performance of the MFC.In consequence,the MFC system based on N-MWCNT/GA anode exhibits a peak power density and output voltage of 2977.8 mW m^(−2)and 0.654 V,which are 1.83 times and 16.3%higher than those obtained with MWCNT/GA,respectively.These results demonstrate that 3D N-MWCNT/GA anodes can be developed for high-power MFCs in different environments by optimizing their chemical and microstructures.
基金supported by the National Key Research and Development Program of China(No.2018YFA0901300)the National Natural Science Foundation of China(No.NSFC 21621004)。
文摘The low catalytic efficiency of redox-active cofactor photoregeneration severely limits the performance of photoenzymatic hybrid systems. Herein, we synthesized thiophene-conjugated porous C3N4 nanosheets(CN-ATCN) exhibiting boosted photoregeneration activity of nicotinamide cofactors(NADH and NADPH), which are the most common redox cofactors of oxidoreductases, with regeneration rates of 59.00 μM/min for NADH and 40.99 μM/min for NADPH, ~ 84.3 and 24.7 times higher than those of bulk g-C3N4, respectively. The thin nanosheet structure of CN-ATCN facilitates the exposure of active sites to reactants and favors the diff usion of reactants and products. Upon conjugation of a thiophene moiety into the carbon nitride framework, the optical and photoelectric properties of CN-ATCN were considerably enhanced by an extended π-conjugation system in the frameworks and molecular type II heterojunctions formed between the incorporated and nonincorporated portions of CN-ATCN. Upon coupling NAD(P)H photoregeneration reaction by CN-ATCN with NAD(P)H-dependent enzymatic systems, sustainable synthesis of L-tert-leucine and styrene oxide was achieved with rates of 964 and 14.9 μM/h, respectively.
基金This work was supported by the National Key R&D Program of China(Grant Nos.2018YFA0305900 and 2022YFA1402304)the National Natural Science Foundation of China(Grant Nos.12122405,52072188,and 12274169)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT_15R23)a Jilin Provincial Science and Technology Development Project(Grant No.20210509038RQ).Some of the calculations were performed at the High Performance Computing Center of Jilin University and on TianHe-1(A)at the National Supercomputer Center in Tianjin.
文摘Recently,room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure[Dasenbrock-Gammon et al.,Nature 615,244(2023)].The superconducting properties might arise from Fm3m-LuH_(3)−δNε.Here,we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations,and we do not find any thermodynamically stable ternary compounds.In addition,we calculate the dynamic stability and superconducting properties of N-doped Fm3m-LuH_(3) using the virtual crystal approximation(VCA)and the supercell method.The R3m-Lu_(2)H_(5)N predicted using the supercell method could be dynamically stable at 50 GPa,with a T_(c) of 27 K.According to the VCA method,the highest T_(c) is 22 K,obtained with 1%N-doping at 30 GPa.Moreover,the doping of nitrogen atoms into Fm3m-LuH_(3) slightly enhances T_(c),but raises the dynamically stable pressure.Our theoretical results show that the T_(c) values of N-doped LuH_(3) estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.
基金the support of the National Natural Science Foundation of China (No.51971099)the Analytical and Testing Center, HUST。
文摘To overcome the disadvantages of inhomogeneous microstructures and poor mechanical properties of additively manufactured Ti-6Al-4V alloys,a novel technique of hybrid deposition and synchronous micro-rolling is proposed.The micro-rolling leads to equiaxed prior β grains,thin discontinuous intergranular α,and equiaxed primary α,in contrast to the coarse columnar prior β grains without the application of micro-rolling.The recrystallization by micro-rolling results in discontinuous intergranular α via the mechanism of strain and interface-induced grain boundary migration.The evolution of α globularization,driven by a solute concentration gradient,starts from the sub-boundary until the formation of equiaxed primary α.Simultaneous strengthening and toughening are achieved,which means an increase in yield strength,ultimate tensile strength,fracture elongation,and work hardening rate.The formation of α recrystallization leads to more fine grain boundaries to strengthen the yield strength,and the improvement of ductility is due to the better-coordinated deformation ability of discontinuous intergranular α and equiaxed primary α.As a result,the fracture mode in micro-rolling changes from intergranular type to transgranular type.