This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic ...This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.展开更多
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)...The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.展开更多
In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and ac...In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.展开更多
In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containi...In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.展开更多
Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilizat...Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].展开更多
Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the spa...Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the space vector applying the volt-sec balance principle results in an instantaneous error voltage that generates high frequency torque ripple.It may lead to an increase in motor vibration and acoustic noise.This article presents a high frequency torque ripple prediction model based on stator flux ripple and proposes a targeted designed variable switching frequency PWM(VSFPWM)strategy to diminish high frequency torque ripple.The switching frequency is dynamically adjusted according to the peak value of the predicted stator flux ripple to mitigate high frequency torque ripple.In contrast to existing strategies,the strategy outlined in this article directly suppresses high frequency torque ripple,thus remaining unaffected by inaccurate motor parameters.Additionally,due to the introduction of the power factor angle,the proposed strategy can better adapt to the full speed range operating conditions of the motor.Detailed simulations and experiments are provided to validate the effectiveness of the proposed strategy.展开更多
基金supported by the National Natural Science Foundation of China (60901055)
文摘This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.
基金the funding support from the National Natural Science Foundation of China(21906072,22006057)the Natural Science Foundation of Jiangsu Province(BK20190982)“Doctor of Mass entrepreneurship and innovation”Project in Jiangsu Province。
文摘The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.
基金supported by National Natural Science Foundations of China(Nos.51977023 and 52077026)the Fundamental Research Funds for the Central Universities(No.DUT23YG227)。
文摘In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.
基金supported by National Natural Science Foundations of China (Nos. 52307163 and 12305279)the China Postdoctoral Science Foundation (Nos. 2023M740498 and 2022M710590)Postdoctoral Fellowship Program of CPSF (No. GZC20230348)。
文摘In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.
基金supported by the National Natural Science Foundation of China(Grant No.:81773874).
文摘Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].
基金supported in part by the National Key Laboratory of Electromagnetic Energy Foundation under Grant 614221722050501 and 61422172220503。
文摘Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the space vector applying the volt-sec balance principle results in an instantaneous error voltage that generates high frequency torque ripple.It may lead to an increase in motor vibration and acoustic noise.This article presents a high frequency torque ripple prediction model based on stator flux ripple and proposes a targeted designed variable switching frequency PWM(VSFPWM)strategy to diminish high frequency torque ripple.The switching frequency is dynamically adjusted according to the peak value of the predicted stator flux ripple to mitigate high frequency torque ripple.In contrast to existing strategies,the strategy outlined in this article directly suppresses high frequency torque ripple,thus remaining unaffected by inaccurate motor parameters.Additionally,due to the introduction of the power factor angle,the proposed strategy can better adapt to the full speed range operating conditions of the motor.Detailed simulations and experiments are provided to validate the effectiveness of the proposed strategy.