The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si...The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.展开更多
Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Bu...Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Butyrolactone(GBL)has emerged as a promising solvent;however,its incompatibility with graphite anode has hindered its application.This limitation necessitates a comprehensive investigation into the underlying mechanisms and potential solutions.In this study,we achieve a molecular-level understanding of the perplexing interphase formation process by employing in-situ spectroelectrochemical techniques and density function calculations.Our findings reveal that,even at high salt concentrations,GBL consistently occupies the primary Li^(+)solvation sheath,leading to extensive GBL decomposition and the formation of a high-impedance and inorganic-poor solid-electrolyte interphase(SEI)layer.Contrary to manipulating solvation structures,our research demonstrates that the utilization of filmforming additives with higher reduction potential facilitates the pre-establishment of a robust SEI film on the graphite anode.This approach effectively inhibits GBL decomposition and significantly enhances the battery's lifespan.This study provides the first reported intrinsic understanding of the unique GBLgraphite incompatibility and offers valuable insights for the development of wide-temperature and high-safety LIBs.展开更多
BZ26-6 Oilfield is a kind of deep metamorphic rock buried-hill volatile oilfield in Bohai Sea, China. Its early development plan is restricted due to the simultaneous production of oil and gas in large sections of res...BZ26-6 Oilfield is a kind of deep metamorphic rock buried-hill volatile oilfield in Bohai Sea, China. Its early development plan is restricted due to the simultaneous production of oil and gas in large sections of reservoirs, unclear understanding of formation fluid properties and uncertainty of gas-oil interface. Through theoretical research on phase recovery and experimental analysis of crude oil phase characteristics in the original formation, characteristic parameters of the equilibrium condensate gas fluid are restored and calculated. Through the superimposed phase diagram of volatile oil and condensate gas, BZ26-6 Oilfield is determined to be a volatile oil reservoir with a condensate gas cap, with formation pressure and saturation pressure of 36.1 MPa, respectively. Based on the research results of oil-gas phase behavior characteristics, the thermodynamic equations and equation of state are jointly used to solve the problem, and the content change curves of each component at different depths are drawn. Combined with the sensitivity analysis of numerical simulation, the gas-oil interface is determined to be -3726 m above sea level. The fluid phase analysis software, Fluidmodeler, is used to simulate volatile oil degassing and condensate gas separation experiments. In combination with oil and gas production data obtained through the production test, the specific oil recovery index and the specific gas recovery index are determined to be 0.408 m<sup>3</sup>/(MPa·d·m) and 1195 m<sup>3</sup>/(MPa·d·m), respectively. And the reasonable production capacity prediction is conducted on the early development of BZ26-6 Oilfield. The research results can provide a theoretical basis for the efficient development of similar complex oil and gas reservoirs.展开更多
Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the inter...Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.展开更多
The horizontal well technology has been widely applied to enhanced oil recovery for low permeability and heavy oil reservoir. It is the important basis for designing and optimizing horizontal well to determine the pro...The horizontal well technology has been widely applied to enhanced oil recovery for low permeability and heavy oil reservoir. It is the important basis for designing and optimizing horizontal well to determine the productivity. The productivity determination of horizontal wells in offshore oil fields is mainly based on the actual productivity data of producing directional wells in the similar reservoirs nearby. Considering pressure drop and oil layer thickness to calculate the productivity, this method lacks certain theoretical basis and requires rich working experience for reservoir engineers. The other method is Joshi Formula which needs the known horizontal well control radius to be known. But the control radius is man-made at certain degree. In order to address the shortcomings of existing methods, a new reservoir engineering method was proposed to determine the horizontal well productivity formula, horizontal flow pattern and control radius based on the principle of equivalent flow resistance and conformal transformation. This method has overcome the disadvantage of determining on person. It provided some theoretical basis for getting the horizontal well productivity and is of some guiding meaning for evaluating the productivity of adjustment wells and development wells.展开更多
To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on ...To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.展开更多
文摘The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.
基金financially supported by the National Natural Science Foundation of China(21972049,22272175)the National Key R&D Program of China(2022YFA1504002)+3 种基金the“Scientist Studio Funding”from Tianmu Lake Institute of Advanced Energy Storage Technologies Co.,Ltd.Dalian Supports High-Level Talent Innovation and Entrepreneurship Projects(2021RD14)the Dalian Institute of Chemical Physics(DICP I202213)the 21C Innovation Laboratory,Contemporary Ampere Technology Ltd.by project No.21C-OP-202208。
文摘Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Butyrolactone(GBL)has emerged as a promising solvent;however,its incompatibility with graphite anode has hindered its application.This limitation necessitates a comprehensive investigation into the underlying mechanisms and potential solutions.In this study,we achieve a molecular-level understanding of the perplexing interphase formation process by employing in-situ spectroelectrochemical techniques and density function calculations.Our findings reveal that,even at high salt concentrations,GBL consistently occupies the primary Li^(+)solvation sheath,leading to extensive GBL decomposition and the formation of a high-impedance and inorganic-poor solid-electrolyte interphase(SEI)layer.Contrary to manipulating solvation structures,our research demonstrates that the utilization of filmforming additives with higher reduction potential facilitates the pre-establishment of a robust SEI film on the graphite anode.This approach effectively inhibits GBL decomposition and significantly enhances the battery's lifespan.This study provides the first reported intrinsic understanding of the unique GBLgraphite incompatibility and offers valuable insights for the development of wide-temperature and high-safety LIBs.
文摘BZ26-6 Oilfield is a kind of deep metamorphic rock buried-hill volatile oilfield in Bohai Sea, China. Its early development plan is restricted due to the simultaneous production of oil and gas in large sections of reservoirs, unclear understanding of formation fluid properties and uncertainty of gas-oil interface. Through theoretical research on phase recovery and experimental analysis of crude oil phase characteristics in the original formation, characteristic parameters of the equilibrium condensate gas fluid are restored and calculated. Through the superimposed phase diagram of volatile oil and condensate gas, BZ26-6 Oilfield is determined to be a volatile oil reservoir with a condensate gas cap, with formation pressure and saturation pressure of 36.1 MPa, respectively. Based on the research results of oil-gas phase behavior characteristics, the thermodynamic equations and equation of state are jointly used to solve the problem, and the content change curves of each component at different depths are drawn. Combined with the sensitivity analysis of numerical simulation, the gas-oil interface is determined to be -3726 m above sea level. The fluid phase analysis software, Fluidmodeler, is used to simulate volatile oil degassing and condensate gas separation experiments. In combination with oil and gas production data obtained through the production test, the specific oil recovery index and the specific gas recovery index are determined to be 0.408 m<sup>3</sup>/(MPa·d·m) and 1195 m<sup>3</sup>/(MPa·d·m), respectively. And the reasonable production capacity prediction is conducted on the early development of BZ26-6 Oilfield. The research results can provide a theoretical basis for the efficient development of similar complex oil and gas reservoirs.
基金the National Natural Science Foundation of China(No.51934001).
文摘Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.
文摘The horizontal well technology has been widely applied to enhanced oil recovery for low permeability and heavy oil reservoir. It is the important basis for designing and optimizing horizontal well to determine the productivity. The productivity determination of horizontal wells in offshore oil fields is mainly based on the actual productivity data of producing directional wells in the similar reservoirs nearby. Considering pressure drop and oil layer thickness to calculate the productivity, this method lacks certain theoretical basis and requires rich working experience for reservoir engineers. The other method is Joshi Formula which needs the known horizontal well control radius to be known. But the control radius is man-made at certain degree. In order to address the shortcomings of existing methods, a new reservoir engineering method was proposed to determine the horizontal well productivity formula, horizontal flow pattern and control radius based on the principle of equivalent flow resistance and conformal transformation. This method has overcome the disadvantage of determining on person. It provided some theoretical basis for getting the horizontal well productivity and is of some guiding meaning for evaluating the productivity of adjustment wells and development wells.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-AT-19-005)the National Natural Science Foundation of China(No.51934001).
文摘To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.