Bod et al.1 recently published a study in Nature that garnered attention to B cell-associated anti-tumor immunity and immunotherapy of melanoma and other tumors1.As a promising supplemental immunotherapy to mainstream...Bod et al.1 recently published a study in Nature that garnered attention to B cell-associated anti-tumor immunity and immunotherapy of melanoma and other tumors1.As a promising supplemental immunotherapy to mainstream methods that target T and natural killer(NK)cells,B cell-associated anti-tumor immunotherapy is promising。展开更多
This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analy...This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains.展开更多
We present a novel formulation, based on the latest advancement in polynomial system solving via linear algebra, for identifying limit cycles in general n-dimensional autonomous nonlinear polynomial systems. The condi...We present a novel formulation, based on the latest advancement in polynomial system solving via linear algebra, for identifying limit cycles in general n-dimensional autonomous nonlinear polynomial systems. The condition for the existence of an algebraic limit cycle is first set up and cast into a Macaulay matrix format whereby polynomials are regarded as coefficient vectors of monomials. This results in a system of polynomial equations whose roots are solved through the null space of another Macaulay matrix. This two-level Macaulay matrix approach relies solely on linear algebra and eigenvalue computation with robust numerical implementation. Furthermore, a state immersion technique further enlarges the scope to cover also non-polynomial (including exponential and logarithmic) limit cycles. Application examples are given to demonstrate the efficacy of the proposed framework.展开更多
As the development of economy, the corporate social responsibility (CSR) received more and more recognition from academic and business. The traditional economy with only goal of pursuing the wealth is changing rapi...As the development of economy, the corporate social responsibility (CSR) received more and more recognition from academic and business. The traditional economy with only goal of pursuing the wealth is changing rapidly. Chinese corporations realize that it is important and urgent to value the social responsibility, search for effective means to balance the relationship between CSR and COP (corporate operating performance). Meanwhile, it is helpful and meaningful for the society to build up a healthy and appropriate operating value for corporations. However, there is always a debate of how many social responsibilities a corporation should take in order to satisfy the corporate development and the relationship between CSR and profit, and previous researches on corporate social responsibility mainly focused on all stakeholders of a company. As more and more corporations are aware of the importance of their employee, this study specifically selects employee, one of the most important stakeholders, as the subject investigated. Meanwhile, it chooses New Era Health Industry (Group) Co., Ltd as the target enterprise, which is the only state-owned key enterprises in health industry and the leading corporation in directselling industry in China's Mainland. In order to research the relationship between corporate operating performance and the satisfaction of employees’ material needs and psychological needs, this study plans to complete it by combining the theoretical and empirical study, qualitative analysis and quantitative analysis research methods. Based on a questionnaire of 200 employees in New Era, this study analyzes the situation of CSR to employees for New Era and comes to the conclusion of the relationship between the CSR and COP. According to the research result, this study may give some suggestions for Chinese corporations to fulfill their socialresponsibility system and to improve the situation of the lack of CSR to employees.展开更多
The intermittent nature of renewable energy sources sets a requirement for efficient energy storage to mitigate the conflict between energy supply and demand.Hydrogen is a promising choice for energy storage due to it...The intermittent nature of renewable energy sources sets a requirement for efficient energy storage to mitigate the conflict between energy supply and demand.Hydrogen is a promising choice for energy storage due to its high energy density.However,the conversion of electrical energy to chemical energy stored in hydrogen through water electrolysis suffers from low efficiency,and the electricity cost dominates the total cost of hydrogen production.Here,we report the study of improving the hydrogen evolution reaction activity of Pt-based catalysts by building a nanoscale surface NiO and Pt interface,further optimizing the performance via tuning the lattice parameter of the core of nanoparticles,which can be achieved by varying the dealloying annealing time.The optimized PtCuNi-O/C and PtNi-O/C catalysts are demonstrated to be one of the best catalysts,with a mass activity(MA)of 9.1 and 8.7 mA/μgPt,which is 9.9-fold and 9.5-fold of that of Pt/C,respectively.展开更多
Achieving high loading of active sulfur yet rational regulating the shuttle effect of lithium polysulfide(LiPS)is of great significance in pursuit of high-performance lithium-sulfur(Li-S)battery.Herein,we develop a fr...Achieving high loading of active sulfur yet rational regulating the shuttle effect of lithium polysulfide(LiPS)is of great significance in pursuit of high-performance lithium-sulfur(Li-S)battery.Herein,we develop a free-standing graphene nitrogen(N),phosphorus(P)and fluorine(F)co-doped mesoporous carbon-sulfur(G-NPFMC-S)film,which was used as a binder-free cathode in Li-S battery.The developed mesoporous carbon(MC)achieved a high specific surface area of 921 m^(2)·g^(-1)with a uniform pore size distribution of 15 nm.The inserted graphene network inside G-NPFMC-S cathode can effectively improve its electrical conductivity and simultaneously restrict the shuttle of LiPS.A high sulfur loading of 86%was achieved due to the excellent porous structures of graphene-NPFMC(G-NPFMC)composite.When implemented as a freestanding cathode in Li-S battery,this G-NPFMC-S achieved a high specific capacity(1,356 mAh·g^(-1)),favorable rate capability,and long-term cycling stability up to 500 cycles with a minimum capacity fading rate of 0.025%per cycle,outperforming the corresponding performances of NPFMC-sulfur(NPFMC-S)and MC-sulfur(MC-S).These promising results can be ascribed to the featured structures that formed inside G-NPFMC-S film,as that highly porous NPFMC can provide sufficient storage space for the loading of sulfur,while,the N,P,F-doped carbonic interface and the inserted graphene network help hinder the shuttle of LiPS via chemical adsorption and physical barrier effect.This proposed unique structure can provide a bright prospect in that high mass loading of active sulfur and restriction the shuttle of LiPS can be simultaneously achieved for Li-S battery.展开更多
As numerous distributed energy resources(DERs)are integrated into the distribution networks,the optimal dispatch of DERs is more and more imperative to achieve transition to active distribution networks(ADNs).Since ac...As numerous distributed energy resources(DERs)are integrated into the distribution networks,the optimal dispatch of DERs is more and more imperative to achieve transition to active distribution networks(ADNs).Since accurate models are usually unavailable in ADNs,an increasing number of reinforcement learning(RL)based methods have been proposed for the optimal dispatch problem.However,these RL based methods are typically formulated without safety guarantees,which hinders their application in real world.In this paper,we propose an RL based method called supervisor-projector-enhanced safe soft actor-critic(S3AC)for the optimal dispatch of DERs in ADNs,which not only minimizes the operational cost but also satisfies safety constraints during online execution.In the proposed S3AC,the data-driven supervisor and projector are pre-trained based on the historical data from supervisory control and data acquisition(SCADA)system,effectively providing enhanced safety for executed actions.Numerical studies on several IEEE test systems demonstrate the effectiveness and safety of the proposed S3AC.展开更多
For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updati...For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes.展开更多
Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and r...Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and reduce the weight of landing gear, Global/local Linked Driven Optimization Strategy(GLDOS) was developed to conduct the overall process design of lower drag stay in respect of optimization thought. The whole-process optimization involves two stages of structural conceptual design and detailed design. In the structural conceptual design, the landing gear lower drag stay was globally topologically optimized by adopting multiple starting points algorithm. In the detailed design, the local size and shape of landing gear lower drag stay were globally optimized by the gradient optimization strategy. The GLDOS method adopts different optimization strategies for different optimization stages to acquire the optimum design effect. Through the experimental validation, the weight of the optimized lower dray stay with the developed GLDOS is reduced by 16.79% while keeping enough strength and stiffness, which satisfies the requirements of engineering design under the typical loading conditions. The proposed GLDOS is validated to be accurate and efficient in optimization scheme and design cycles. The efforts of this paper provide a whole-process optimization approach regarding different optimization technologies in different design phases, which is significant in reducing structural weight and enhance design tp wid 1 precision for complex structures in aircrafts.展开更多
In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarc...In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarchical Model Updating Strategy(HMUS)is developed for Finite Element(FE)model updating with regard to uncorrelated modes.The principle of HMUS is first elaborated by integrating hierarchical modeling concept,model updating technology with proper uncorrelated mode treatment,and parametric modeling.In the developed strategy,the correct correlated mode pairs amongst the uncorrelated modes are identified by an error minimization procedure.The proposed updating technique is validated by the dynamic FE model updating of a simple fixed–fixed beam.The proposed HMUS is then applied to the FE model updating of an aeroengine stator system(casings)to demonstrate its effectiveness.Our studies reveal that(A)parametric modeling technique is able to build an efficient equivalent model by simplifying complex structure in geometry while ensuring the consistency of mechanical characteristics;(B)the developed model updating technique efficiently processes the uncorrelated modes and precisely identifies correct Correlated Mode Pairs(CMPs)between FE model and experiment;(C)the proposed HMUS is accurate and efficient in the FE model updating of complex assembled structures such as aeroengine casings with large-scale model,complex geometry,high-nonlinearity and numerous parameters;(D)it is appropriate to update a complex structural FE model parameterized.The efforts of this study provide an efficient updating strategy for the dynamic model updating of complex assembled structures with experimental test data,which is promising to promote the precision and feasibility of simulation-based design optimization and performance evaluation of complex structures.展开更多
JUNO is a multi-purpose neutrino observatory under construction in the south of China.This publication presents new sensitivity estimates for the measurement of the △m_(31)^(2),△m_(21)^(2),sin^(2)θ_(12),and sin^(2)...JUNO is a multi-purpose neutrino observatory under construction in the south of China.This publication presents new sensitivity estimates for the measurement of the △m_(31)^(2),△m_(21)^(2),sin^(2)θ_(12),and sin^(2)θ_(13) oscillation parameters using reactor antineutrinos,which is one of the primary physics goals of the experiment.The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site,the nuclear reactors in the surrounding area and beyond,the detector response uncertainties,and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector.It is found that the △m_(21)^(2) and sin^(2)θ_(12) oscillation parameters will be determined to 0.5%precision or better in six years of data collection.In the same period,the △m_(31)^(2) parameter will be determined to about 0.2%precision for each mass ordering hypothesis.The new precision represents approximately an order of magnitude improvement over existing constraints for these three parameters.展开更多
A perturbative method of computing the total travel time of both null and lightlike rays in arbitrary static spherically symmetric spacetimes in the weak field limit is proposed.The resultant total time takes a quasi-...A perturbative method of computing the total travel time of both null and lightlike rays in arbitrary static spherically symmetric spacetimes in the weak field limit is proposed.The resultant total time takes a quasi-series form of the impact parameter.The coefficient of this series at a certain order n is shown to be determined by the asymptotic expansion of the metric functions to the order n+1.For the leading order(s),the time delay,as well as the difference between the time delays of two types of relativistic signals,is shown to take a universal form for all SSS spacetimes.This universal form depends on the mass M and a post-Newtonian parameter γ of the spacetime.The analytical result is numerically verified using the central black hole of galaxy M87 as the gravitational lensing center.展开更多
文摘Bod et al.1 recently published a study in Nature that garnered attention to B cell-associated anti-tumor immunity and immunotherapy of melanoma and other tumors1.As a promising supplemental immunotherapy to mainstream methods that target T and natural killer(NK)cells,B cell-associated anti-tumor immunotherapy is promising。
基金supported by the National Natural Science Foundation of China(62303457,U21A20482)Project funded by China Postdoctoral Science Foundation (2023M733737)the National Key R&D Program of China(2022YFB3303800)。
文摘This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains.
文摘We present a novel formulation, based on the latest advancement in polynomial system solving via linear algebra, for identifying limit cycles in general n-dimensional autonomous nonlinear polynomial systems. The condition for the existence of an algebraic limit cycle is first set up and cast into a Macaulay matrix format whereby polynomials are regarded as coefficient vectors of monomials. This results in a system of polynomial equations whose roots are solved through the null space of another Macaulay matrix. This two-level Macaulay matrix approach relies solely on linear algebra and eigenvalue computation with robust numerical implementation. Furthermore, a state immersion technique further enlarges the scope to cover also non-polynomial (including exponential and logarithmic) limit cycles. Application examples are given to demonstrate the efficacy of the proposed framework.
文摘As the development of economy, the corporate social responsibility (CSR) received more and more recognition from academic and business. The traditional economy with only goal of pursuing the wealth is changing rapidly. Chinese corporations realize that it is important and urgent to value the social responsibility, search for effective means to balance the relationship between CSR and COP (corporate operating performance). Meanwhile, it is helpful and meaningful for the society to build up a healthy and appropriate operating value for corporations. However, there is always a debate of how many social responsibilities a corporation should take in order to satisfy the corporate development and the relationship between CSR and profit, and previous researches on corporate social responsibility mainly focused on all stakeholders of a company. As more and more corporations are aware of the importance of their employee, this study specifically selects employee, one of the most important stakeholders, as the subject investigated. Meanwhile, it chooses New Era Health Industry (Group) Co., Ltd as the target enterprise, which is the only state-owned key enterprises in health industry and the leading corporation in directselling industry in China's Mainland. In order to research the relationship between corporate operating performance and the satisfaction of employees’ material needs and psychological needs, this study plans to complete it by combining the theoretical and empirical study, qualitative analysis and quantitative analysis research methods. Based on a questionnaire of 200 employees in New Era, this study analyzes the situation of CSR to employees for New Era and comes to the conclusion of the relationship between the CSR and COP. According to the research result, this study may give some suggestions for Chinese corporations to fulfill their socialresponsibility system and to improve the situation of the lack of CSR to employees.
基金supported by the National Science Foundation with grant numbers CBET 1159240,DMR-1420620,and DMR-1506535Use of Beamline 7-BM(QAS)of the National Synchrotron Light Source(NSLS)II was supported by the NSLS-II,Brookhaven National Laboratory,under U.S.DOE Contract No.DESC0012704supported by the DOE Office of Science under contract No.DE-AC02-05CH11231.
文摘The intermittent nature of renewable energy sources sets a requirement for efficient energy storage to mitigate the conflict between energy supply and demand.Hydrogen is a promising choice for energy storage due to its high energy density.However,the conversion of electrical energy to chemical energy stored in hydrogen through water electrolysis suffers from low efficiency,and the electricity cost dominates the total cost of hydrogen production.Here,we report the study of improving the hydrogen evolution reaction activity of Pt-based catalysts by building a nanoscale surface NiO and Pt interface,further optimizing the performance via tuning the lattice parameter of the core of nanoparticles,which can be achieved by varying the dealloying annealing time.The optimized PtCuNi-O/C and PtNi-O/C catalysts are demonstrated to be one of the best catalysts,with a mass activity(MA)of 9.1 and 8.7 mA/μgPt,which is 9.9-fold and 9.5-fold of that of Pt/C,respectively.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52270006 and 22209063)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA460004)the Priority Academic Program Development of Jiangsu Higher Education Institutions,and the Natural Science Foundation of Xuzhou City(KC21283).
文摘Achieving high loading of active sulfur yet rational regulating the shuttle effect of lithium polysulfide(LiPS)is of great significance in pursuit of high-performance lithium-sulfur(Li-S)battery.Herein,we develop a free-standing graphene nitrogen(N),phosphorus(P)and fluorine(F)co-doped mesoporous carbon-sulfur(G-NPFMC-S)film,which was used as a binder-free cathode in Li-S battery.The developed mesoporous carbon(MC)achieved a high specific surface area of 921 m^(2)·g^(-1)with a uniform pore size distribution of 15 nm.The inserted graphene network inside G-NPFMC-S cathode can effectively improve its electrical conductivity and simultaneously restrict the shuttle of LiPS.A high sulfur loading of 86%was achieved due to the excellent porous structures of graphene-NPFMC(G-NPFMC)composite.When implemented as a freestanding cathode in Li-S battery,this G-NPFMC-S achieved a high specific capacity(1,356 mAh·g^(-1)),favorable rate capability,and long-term cycling stability up to 500 cycles with a minimum capacity fading rate of 0.025%per cycle,outperforming the corresponding performances of NPFMC-sulfur(NPFMC-S)and MC-sulfur(MC-S).These promising results can be ascribed to the featured structures that formed inside G-NPFMC-S film,as that highly porous NPFMC can provide sufficient storage space for the loading of sulfur,while,the N,P,F-doped carbonic interface and the inserted graphene network help hinder the shuttle of LiPS via chemical adsorption and physical barrier effect.This proposed unique structure can provide a bright prospect in that high mass loading of active sulfur and restriction the shuttle of LiPS can be simultaneously achieved for Li-S battery.
基金supported in part by the National Key Research and Development Plan of China(No.2022YFB2402900)in part by the Science and Technology Project of State Grid Corporation of China“Key Techniques of Adaptive Grid Integration and Active Synchronization for Extremely High Penetration Distributed Photovoltaic Power Generation”(No.52060023001T)。
文摘As numerous distributed energy resources(DERs)are integrated into the distribution networks,the optimal dispatch of DERs is more and more imperative to achieve transition to active distribution networks(ADNs).Since accurate models are usually unavailable in ADNs,an increasing number of reinforcement learning(RL)based methods have been proposed for the optimal dispatch problem.However,these RL based methods are typically formulated without safety guarantees,which hinders their application in real world.In this paper,we propose an RL based method called supervisor-projector-enhanced safe soft actor-critic(S3AC)for the optimal dispatch of DERs in ADNs,which not only minimizes the operational cost but also satisfies safety constraints during online execution.In the proposed S3AC,the data-driven supervisor and projector are pre-trained based on the historical data from supervisory control and data acquisition(SCADA)system,effectively providing enhanced safety for executed actions.Numerical studies on several IEEE test systems demonstrate the effectiveness and safety of the proposed S3AC.
基金co-supported by National Natural Science Foundation of China(Nos.51975124 and 51675179)Shanghai International Cooperation Project of One Belt and One Road of China(No.20110741700)Research Startup Fund of Fudan University(No.FDU38341)。
文摘For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes.
基金co-supported by National Natural Science Foundation of China (Nos. 51975124 and 51675179)Aerospace Science and Technology Fund of China (No.AERO201937)Research Start-up Funding of Fudan University (No. FDU38341)。
文摘Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and reduce the weight of landing gear, Global/local Linked Driven Optimization Strategy(GLDOS) was developed to conduct the overall process design of lower drag stay in respect of optimization thought. The whole-process optimization involves two stages of structural conceptual design and detailed design. In the structural conceptual design, the landing gear lower drag stay was globally topologically optimized by adopting multiple starting points algorithm. In the detailed design, the local size and shape of landing gear lower drag stay were globally optimized by the gradient optimization strategy. The GLDOS method adopts different optimization strategies for different optimization stages to acquire the optimum design effect. Through the experimental validation, the weight of the optimized lower dray stay with the developed GLDOS is reduced by 16.79% while keeping enough strength and stiffness, which satisfies the requirements of engineering design under the typical loading conditions. The proposed GLDOS is validated to be accurate and efficient in optimization scheme and design cycles. The efforts of this paper provide a whole-process optimization approach regarding different optimization technologies in different design phases, which is significant in reducing structural weight and enhance design tp wid 1 precision for complex structures in aircrafts.
基金co-supported by National Natural Science Foundation of China(No.51975124)Shanghai International Cooperation Project of One Belt and One Road of China(No.20110741700)Major Research Special Project of Aeroengine and Gas Turbine of China(No.J2019-IV-0016)。
文摘In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarchical Model Updating Strategy(HMUS)is developed for Finite Element(FE)model updating with regard to uncorrelated modes.The principle of HMUS is first elaborated by integrating hierarchical modeling concept,model updating technology with proper uncorrelated mode treatment,and parametric modeling.In the developed strategy,the correct correlated mode pairs amongst the uncorrelated modes are identified by an error minimization procedure.The proposed updating technique is validated by the dynamic FE model updating of a simple fixed–fixed beam.The proposed HMUS is then applied to the FE model updating of an aeroengine stator system(casings)to demonstrate its effectiveness.Our studies reveal that(A)parametric modeling technique is able to build an efficient equivalent model by simplifying complex structure in geometry while ensuring the consistency of mechanical characteristics;(B)the developed model updating technique efficiently processes the uncorrelated modes and precisely identifies correct Correlated Mode Pairs(CMPs)between FE model and experiment;(C)the proposed HMUS is accurate and efficient in the FE model updating of complex assembled structures such as aeroengine casings with large-scale model,complex geometry,high-nonlinearity and numerous parameters;(D)it is appropriate to update a complex structural FE model parameterized.The efforts of this study provide an efficient updating strategy for the dynamic model updating of complex assembled structures with experimental test data,which is promising to promote the precision and feasibility of simulation-based design optimization and performance evaluation of complex structures.
基金Supported by the Chinese Academy of Sciencesthe National Key R&D Program of China+18 种基金the CAS Center for Excellence in Particle Physics,Wuyi Universitythe Tsung-Dao Lee Institute of Shanghai Jiao Tong University in Chinathe Institut National de Physique Nucléaire et de Physique de Particules(IN2P3)in Francethe Istituto Nazionale di Fisica Nucleare(INFN)in Italythe Italian-Chinese collaborative research program MAECI-NSFCthe Fond de la Recherche Scientifique(F.R.S-FNRS)FWO under the“Excellence of Science-EOS in Belgium”the Conselho Nacional de Desenvolvimento Científico e Tecnològico in Brazilthe Agencia Nacional de Investigacion y Desarrollo and ANID-Millennium Science Initiative Program-ICN2019_044 in Chilethe Charles University Research Centre and the Ministry of Education,Youth,and Sports in Czech Republicthe Deutsche Forschungsgemeinschaft(DFG)the Helmholtz Associationthe Cluster of Excellence PRISMA+in Germanythe Joint Institute of Nuclear Research(JINR)and Lomonosov Moscow State University in Russiathe joint Russian Science Foundation(RSF)National Natural Science Foundation of China(NSFC)research programthe MOST and MOE in Taiwanthe Chulalongkorn University and Suranaree University of Technology in Thailand,University of California at Irvinethe National Science Foundation in USA。
文摘JUNO is a multi-purpose neutrino observatory under construction in the south of China.This publication presents new sensitivity estimates for the measurement of the △m_(31)^(2),△m_(21)^(2),sin^(2)θ_(12),and sin^(2)θ_(13) oscillation parameters using reactor antineutrinos,which is one of the primary physics goals of the experiment.The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site,the nuclear reactors in the surrounding area and beyond,the detector response uncertainties,and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector.It is found that the △m_(21)^(2) and sin^(2)θ_(12) oscillation parameters will be determined to 0.5%precision or better in six years of data collection.In the same period,the △m_(31)^(2) parameter will be determined to about 0.2%precision for each mass ordering hypothesis.The new precision represents approximately an order of magnitude improvement over existing constraints for these three parameters.
基金Supported by the National Natural Science Foundation of China(11504276)MOST China(2014GB109004)。
文摘A perturbative method of computing the total travel time of both null and lightlike rays in arbitrary static spherically symmetric spacetimes in the weak field limit is proposed.The resultant total time takes a quasi-series form of the impact parameter.The coefficient of this series at a certain order n is shown to be determined by the asymptotic expansion of the metric functions to the order n+1.For the leading order(s),the time delay,as well as the difference between the time delays of two types of relativistic signals,is shown to take a universal form for all SSS spacetimes.This universal form depends on the mass M and a post-Newtonian parameter γ of the spacetime.The analytical result is numerically verified using the central black hole of galaxy M87 as the gravitational lensing center.