The association between chronic HCV infection and type 2 diabetes mellitus(T2DM)has been established;however,there is limited research onβ-cell function particularly in the pre-diabetic population.Here,we evaluated i...The association between chronic HCV infection and type 2 diabetes mellitus(T2DM)has been established;however,there is limited research onβ-cell function particularly in the pre-diabetic population.Here,we evaluated indices ofβ-cell function and insulin sensitivity across the spectrum from normal glucose tolerance to T2DMin individuals with and without chronic hepatitis C(CHC),and the effects of antiviral treatments on these variables.A total of 153 noncirrhotic,non-fibrotic CHC patients with a BMI<25 were enrolled in the study.Among them,119 were successfully treated with either direct acting antiviral(DAA)drugs or pegylated interferon/ribavirin(IFN/RBV)anti-HCV therapy.Fasting state-and oral glucose tolerance test(OGTT)-derived indexes were used to evaluateβ-cell function and insulin sensitivity.Among all subjects,19(13%)had T2DM and 21%exhibited pre-diabetes including 8%isolated impaired fasting glucose(IFG)and 13%combined IFG and impaired glucose tolerance(IGT).Early and total insulin secretion adjusted for the degree of insulin resistance were decreased in pre-diabetic CHC patients compared to HCVuninfected individuals.Viral eradication through DAA or IFN/RBV therapy demonstrated positive impacts on insulin sensitivity andβ-cell function in CHC patients who achieved sustained virologic response(SVR),regardless of fasting or OGTT state.These findings emphasize the role of HCV in the development ofβ-cell dysfunction,while also suggesting that viral eradication can improve insulin secretion,reverse insulin resistance,and ameliorate glycemic control.These results have important implications for managing pre-diabetic CHC patients and could prevent diabetes-related clinical manifestations and complications.展开更多
Future quantum information networks operated on telecom channels require qubit transfer between different wavelengths while preserving quantum coherence and entanglement. Qubit transfer is a nonlinear optical process,...Future quantum information networks operated on telecom channels require qubit transfer between different wavelengths while preserving quantum coherence and entanglement. Qubit transfer is a nonlinear optical process,but currently the types of atoms used for quantum information processing and storage are limited by the narrow bandwidth of upconversion available. Here we present the first experimental demonstration of broadband and high-efficiency quasi-phase matching second-harmonic generation(SHG) in a chip-scale periodically poled lithium niobate thin film. We achieve a large bandwidth of up to 2 THz for SHG by satisfying quasi-phase matching and group-velocity matching simultaneously. Furthermore, by changing the film thickness, the central wavelength of the quasi-phase matching SHG bandwidth can be modulated from 2.70 μm to 1.44 μm. The reconfigurable quasi-phase matching lithium niobate thin film provides a significant on-chip integrated platform for photonics and quantum optics.展开更多
In this paper,we demonstrate efficient spontaneous quasi-phase matched(SQPM)second harmonic generation(SHG)in a microracetrack resonator on X-cut thin film lithium niobate.Our approach does not involve poling,but expl...In this paper,we demonstrate efficient spontaneous quasi-phase matched(SQPM)second harmonic generation(SHG)in a microracetrack resonator on X-cut thin film lithium niobate.Our approach does not involve poling,but exploits the anisotropy of the crystals to allow the phase-matching condition to be fulfilled spontaneously as the TE-polarized light circulates in a specifically designed racetrack resonator.In experiment,normalized on-chip conversion efficiencies of 1.01×10-4/W and 0.43×10-4/W are achieved by 37th-order and 111th-order SQPM,respectively.The configurable SQPM will benefit the application of nonlinear frequency conversion and quantum source generation in chip-scale integrated photonics compatible with standard CMOS fabrication processes.展开更多
基金supported by grants from the National Natural Science Foundation of China(grant number 82170838,82370873)Open Research Fund Program of the State Key Laboratory of Virology of China(grant number 2018IOV003).
文摘The association between chronic HCV infection and type 2 diabetes mellitus(T2DM)has been established;however,there is limited research onβ-cell function particularly in the pre-diabetic population.Here,we evaluated indices ofβ-cell function and insulin sensitivity across the spectrum from normal glucose tolerance to T2DMin individuals with and without chronic hepatitis C(CHC),and the effects of antiviral treatments on these variables.A total of 153 noncirrhotic,non-fibrotic CHC patients with a BMI<25 were enrolled in the study.Among them,119 were successfully treated with either direct acting antiviral(DAA)drugs or pegylated interferon/ribavirin(IFN/RBV)anti-HCV therapy.Fasting state-and oral glucose tolerance test(OGTT)-derived indexes were used to evaluateβ-cell function and insulin sensitivity.Among all subjects,19(13%)had T2DM and 21%exhibited pre-diabetes including 8%isolated impaired fasting glucose(IFG)and 13%combined IFG and impaired glucose tolerance(IGT).Early and total insulin secretion adjusted for the degree of insulin resistance were decreased in pre-diabetic CHC patients compared to HCVuninfected individuals.Viral eradication through DAA or IFN/RBV therapy demonstrated positive impacts on insulin sensitivity andβ-cell function in CHC patients who achieved sustained virologic response(SVR),regardless of fasting or OGTT state.These findings emphasize the role of HCV in the development ofβ-cell dysfunction,while also suggesting that viral eradication can improve insulin secretion,reverse insulin resistance,and ameliorate glycemic control.These results have important implications for managing pre-diabetic CHC patients and could prevent diabetes-related clinical manifestations and complications.
基金National Key R&D Program of China(2017YFA0303700)National Natural Science Foundation of China(NSFC)(11574208)
文摘Future quantum information networks operated on telecom channels require qubit transfer between different wavelengths while preserving quantum coherence and entanglement. Qubit transfer is a nonlinear optical process,but currently the types of atoms used for quantum information processing and storage are limited by the narrow bandwidth of upconversion available. Here we present the first experimental demonstration of broadband and high-efficiency quasi-phase matching second-harmonic generation(SHG) in a chip-scale periodically poled lithium niobate thin film. We achieve a large bandwidth of up to 2 THz for SHG by satisfying quasi-phase matching and group-velocity matching simultaneously. Furthermore, by changing the film thickness, the central wavelength of the quasi-phase matching SHG bandwidth can be modulated from 2.70 μm to 1.44 μm. The reconfigurable quasi-phase matching lithium niobate thin film provides a significant on-chip integrated platform for photonics and quantum optics.
基金supported by the National Key R&D Program of China(Grant No.2019YFB2203501)National Natural Science Foundation of China(Grant Nos.12134009,and 91950107)+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01-ZX06)Shanghai Jiao Tong University(SJTU)(Grant No.21X010200828)。
文摘In this paper,we demonstrate efficient spontaneous quasi-phase matched(SQPM)second harmonic generation(SHG)in a microracetrack resonator on X-cut thin film lithium niobate.Our approach does not involve poling,but exploits the anisotropy of the crystals to allow the phase-matching condition to be fulfilled spontaneously as the TE-polarized light circulates in a specifically designed racetrack resonator.In experiment,normalized on-chip conversion efficiencies of 1.01×10-4/W and 0.43×10-4/W are achieved by 37th-order and 111th-order SQPM,respectively.The configurable SQPM will benefit the application of nonlinear frequency conversion and quantum source generation in chip-scale integrated photonics compatible with standard CMOS fabrication processes.