期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Deep Learning Approach to Mesh Segmentation 被引量:1
1
作者 Abubakar Sulaiman Gezawa Qicong Wang +1 位作者 haruna chiroma Yunqi Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1745-1763,共19页
In the shape analysis community,decomposing a 3D shape intomeaningful parts has become a topic of interest.3D model segmentation is largely used in tasks such as shape deformation,shape partial matching,skeleton extra... In the shape analysis community,decomposing a 3D shape intomeaningful parts has become a topic of interest.3D model segmentation is largely used in tasks such as shape deformation,shape partial matching,skeleton extraction,shape correspondence,shape annotation and texture mapping.Numerous approaches have attempted to provide better segmentation solutions;however,the majority of the previous techniques used handcrafted features,which are usually focused on a particular attribute of 3Dobjects and so are difficult to generalize.In this paper,we propose a three-stage approach for using Multi-view recurrent neural network to automatically segment a 3D shape into visually meaningful sub-meshes.The first stage involves normalizing and scaling a 3D model to fit within the unit sphere and rendering the object into different views.Contrasting viewpoints,on the other hand,might not have been associated,and a 3D region could correlate into totally distinct outcomes depending on the viewpoint.To address this,we ran each view through(shared weights)CNN and Bolster block in order to create a probability boundary map.The Bolster block simulates the area relationships between different views,which helps to improve and refine the data.In stage two,the feature maps generated in the previous step are correlated using a Recurrent Neural network to obtain compatible fine detail responses for each view.Finally,a layer that is fully connected is used to return coherent edges,which are then back project to 3D objects to produce the final segmentation.Experiments on the Princeton Segmentation Benchmark dataset show that our proposed method is effective for mesh segmentation tasks. 展开更多
关键词 Deep learning mesh segmentation 3D shape shape features
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部