This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and...This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and mechanical parameters.Seven femoral heads from patients with fractured proximal femur were scanned using a micro-CT system.Each femoral head was divided into 12 sub-regions according to the trabecular orientation.One 125 mm^3 trabecular cubic model was reconstructed from each sub-region.A total of 81 trabecular models were reconstructed,except three destroyed sub-regions from two femoral heads during the surgery.Trabecular morphological parameters,i.e.trabecular separation(Tb.Sp),trabecular thickness(Tb.Th),specific bone surface(BS/B V),bone volume fraction(BV/TV),structural model index(SMI),and degree of anisotropy(DA) were measured.Micro-finite element analyses were performed for each cube to obtain the apparent Young's modulus and tissue level von Mises stress distribution under 1%compressive strain along three orthogonal directions,respectively.Results revealed significant regional variations in the morphological parameters(P〈0.05).Young's moduli along the trabecular orientation were significantly higher than those along the other two directions.In general,trabecular mechanical properties in the medial region were lower than those in the lateral region.Trabecular mechanical parameters along the trabecular orientation were significantly correlated with BS/BV,BV/TV,Tb.Th,and DA.In this study,regional variations of microstructural features and mechanical properties in the femoral head of patients with proximal femur fracture were thoroughly investigated at the tissue level.The results of this study will help to elucidate the mechanism of femoral head fracture for reducing fracture risk and developing treatment strategies for the elderly.展开更多
Introduction As a major component of musculoskeletal system,bones support body weight,facilitate body motion,protect internal organs,and also play critical roles in mineral homeostasis.Osteoporosis,one of the most com...Introduction As a major component of musculoskeletal system,bones support body weight,facilitate body motion,protect internal organs,and also play critical roles in mineral homeostasis.Osteoporosis,one of the most common bone diseases,is a result of imbalance in bone metabolism that causes low bone mass and micro-architectural deterioration.The inferior quality of osteoporotic bone leads to a consequent increase in bone fragility and susceptibility to fracture.It is known that osteoporotic fractures occur most frequently in trabeculae-rich skeletal sites such as spine,hip,distal radius,and ankle.With the great increase in the number of senile population,展开更多
The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mech...The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced signi-ficantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mecha-nical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.展开更多
In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or...In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or chain-link fencing has a certain isolating effect on the deer which greatly interferes with the identification of the individual deer.Also,when the target and background grey values are similar,the multiple background targets cannot be completely separated.To better identify the posture and behaviour of deer in a deer shed,we used digital image processing to separate the deer from the background.To address the problems mentioned above,this paper proposes an adaptive threshold segmentation algorithm based on color space.First,the original image is pre-processed and optimized.On this basis,the data are enhanced and contrasted.Next,color space is used to extract the several backgrounds through various color channels,then the adaptive space segmentation of the extracted part of the color space is performed.Based on the segmentation effect of the traditional Otsu algorithm,we designed a comparative experiment that divided the four postures of turning,getting up,lying,and standing,and successfully separated multiple target deer from the background.Experimental results show that compared with K-means,Otsu and hue saturation value(HSV)+K-means,this method is better in performance and accuracy for adaptive segmentation of deer in artificial breeding scenes and can be used to separate artificially cultivated deer from their backgrounds.Both the subjective and objective aspects achieved good segmentation results.This article lays a foundation for the effective identification of abnormal behaviour in sika deer.展开更多
The objective of this study was to study the age-related adaptation of lumbar vertebral trabecular bone at the apparent level, as well as the tissue level in three orthogonal directions. Ninety trabecular specimens we...The objective of this study was to study the age-related adaptation of lumbar vertebral trabecular bone at the apparent level, as well as the tissue level in three orthogonal directions. Ninety trabecular specimens were obtained from six normal L4 vertebral bodies of six male cadavers in two age groups, three aged 62 years and three aged 69 years, and were scanned using a high-resolution micro-computed tomography (micro-CT) system, then converted to micro- finite element models to do micro-finite element analyses. The relationship between apparent stiffness and bone volume fraction, and the tissue level yon Mises stress distribution for each trabecular specimen when compressed separately in the longitudinal direction, medial-lateral and anterior-posterior directions (transverse directions) were derived and compared between two age groups. The results showed that at the apparent level, trabecular bones from 69-year group had stiffer bone structure relative to their volume fractions in all three directions, and in both age groups, changes in bone volume fraction could explain more variations in apparent stiffness in the longitudinal direction than the transverse directions; at the tissue level, aging had little effect on the tissue von Mises stress distributions for the compressions in all the three directions. The novelty of the present study was that it provided quantitative assessments on the age and direction- related adaptation of Chinese male lumbar vertebral trabecular bone from two different levels: stiffness at the apparent level and stress distribution at the tissue level. It may help to understand the failure mechanisms and fracture risks of vertebral body associated with aging and direction for the prevention of fracture risks in elder individuals.展开更多
Radio frequency identification technology is one of the main technologies of Internet of Things(IoT).Through the transmission and reflection of wireless radio frequency signals,non-contact identification is realized,a...Radio frequency identification technology is one of the main technologies of Internet of Things(IoT).Through the transmission and reflection of wireless radio frequency signals,non-contact identification is realized,and multiple objects identification can be realized.However,when multiple tags communicate with a singleton reader simultaneously,collision will occur between the signals,which hinders the successful transmissions.To effectively avoid the tag collision problem and improve the reading performance of RFID systems,two advanced tag identification algorithms namely Adaptive M-ary tree slotted Aloha(AMTS)based on the characteristics of Aloha-based and Query tree-based algorithms are proposed.In AMTS,the reader firstly uses the framed slotted Aloha protocol to map the tag set to different time slots,and then identify the collided tags using binary search method based on collision factor or mapping table.Both performance analysis and extensive experimental results indicate that our proposed algorithms significantly outperforms most existing anti-collision approaches in tag dense RFID systems.展开更多
The scale of deer breeding has gradually increased in recent years and better information management is necessary,which requires the identification of individual deer.In this paper,a deer face dataset is produced usin...The scale of deer breeding has gradually increased in recent years and better information management is necessary,which requires the identification of individual deer.In this paper,a deer face dataset is produced using face images obtained from different angles,and an improved residual neural network(ResNet)-based recognition model is proposed to extract the features of deer faces,which have high similarity.The model is based on ResNet-50,which reduces the depth of the model,and the network depth is only 29 layers;the model connects Squeeze-and-Excitation(SE)modules at each of the four layers where the channel changes to improve the quality of features by compressing the feature information extracted through the entire layer.A maximum pooling layer is used in the ResBlock shortcut connection to reduce the information loss caused by messages passing through the ResBlock.The Rectified Linear Unit(ReLU)activation function in the network is replaced by the Exponential Linear Unit(ELU)activation function to reduce information loss during forward propagation of the network.The preprocessed 6864 sika deer face dataset was used to train the recognition model based on SEResnet,which is demonstrated to identify individuals accurately.By setting up comparative experiments under different structures,the model reduces the amount of parameters,ensures the accuracy of the model,and improves the calculation speed of the model.Using the improved method in this paper to compare with the classical model and facial recognition models of different animals,the results show that the recognition effect of this research method is the best,with an average recognition accuracy of 97.48%.The sika deer face recognition model proposed in this study is effective.The results contribute to the practical application of animal facial recognition technology in the breeding of sika deer and other animals with few distinct facial features.展开更多
Flexible strain sensor has attracted much attention because of its potential application in human motion detection.In this work,the prepared strain sensor was obtained by encapsulating electrospun carbonized sponge(CS...Flexible strain sensor has attracted much attention because of its potential application in human motion detection.In this work,the prepared strain sensor was obtained by encapsulating electrospun carbonized sponge(CS)with room temperature vulcanized silicone rubber(RTVS).In this paper,the formation mechanism of conductive sponge was studied.Based on the combination of carbonized sponge and RTVS,the strain sensing mechanism and piezoresistive properties are discussed.After research and testing,the CS/RTVS flexible strain sensor has excellent fast response speed and stability,and the maximum strain coefficient of the sensor is 136.27.In this study,the self-developed CS/RTVS sensor was used to monitor the movements of the wrist joint,arm elbow joint and fingers in real time.Research experiments show that CS/RTVS flexible strain sensor has good application prospects in the field of human motion monitoring.展开更多
With the increasing intensive and large-scale development of the sika deer breeding industry,it is crucial to assess the health status of the sika deer by monitoring their behaviours.A machine vision-based method for ...With the increasing intensive and large-scale development of the sika deer breeding industry,it is crucial to assess the health status of the sika deer by monitoring their behaviours.A machine vision-based method for the behaviour recognition of sika deer is proposed in this paper.Google Inception Net(GoogLeNet)is used to optimise the model in this paper.First,the number of layers and size of the model were reduced.Then,the 5×5 convolution was changed to two 3×3 convolutions,which reduced the parameters and increased the nonlinearity of the model.A 5×5 convolution kernel was used to replace the original convolution for extracting coarse-grained features and improving the model’s extraction ability.A multi-scale module was added to the model to enhance the multi-faceted feature extraction capability of the model.Simultaneously,the Squeeze-and-Excitation Networks(SE-Net)module was included to increase the channel’s attention and improve the model’s accuracy.The dataset’s images were rotated to reduce overfitting.For image rotation,the angle wasmultiplied by 30°to obtain the dataset enhanced by rotation operations of 30°,60°,90°,120°and 150°.The experimental results showed that the recognition rate of this model in the behaviour of sika deer was 98.92%.Therefore,the model presented in this paper can be applied to the behaviour recognition of sika deer.The results will play an essential role in promoting animal behaviour recognition technology and animal health monitoring management.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11322223,11432016,81471753 and 11272134)the 973 Program(No.2012CB821202)
文摘This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head,as well as to determine the relationship between trabecular morphological and mechanical parameters.Seven femoral heads from patients with fractured proximal femur were scanned using a micro-CT system.Each femoral head was divided into 12 sub-regions according to the trabecular orientation.One 125 mm^3 trabecular cubic model was reconstructed from each sub-region.A total of 81 trabecular models were reconstructed,except three destroyed sub-regions from two femoral heads during the surgery.Trabecular morphological parameters,i.e.trabecular separation(Tb.Sp),trabecular thickness(Tb.Th),specific bone surface(BS/B V),bone volume fraction(BV/TV),structural model index(SMI),and degree of anisotropy(DA) were measured.Micro-finite element analyses were performed for each cube to obtain the apparent Young's modulus and tissue level von Mises stress distribution under 1%compressive strain along three orthogonal directions,respectively.Results revealed significant regional variations in the morphological parameters(P〈0.05).Young's moduli along the trabecular orientation were significantly higher than those along the other two directions.In general,trabecular mechanical properties in the medial region were lower than those in the lateral region.Trabecular mechanical parameters along the trabecular orientation were significantly correlated with BS/BV,BV/TV,Tb.Th,and DA.In this study,regional variations of microstructural features and mechanical properties in the femoral head of patients with proximal femur fracture were thoroughly investigated at the tissue level.The results of this study will help to elucidate the mechanism of femoral head fracture for reducing fracture risk and developing treatment strategies for the elderly.
基金supported by the grant from National Natural Science Foundation of China(No. 11120101001)
文摘Introduction As a major component of musculoskeletal system,bones support body weight,facilitate body motion,protect internal organs,and also play critical roles in mineral homeostasis.Osteoporosis,one of the most common bone diseases,is a result of imbalance in bone metabolism that causes low bone mass and micro-architectural deterioration.The inferior quality of osteoporotic bone leads to a consequent increase in bone fragility and susceptibility to fracture.It is known that osteoporotic fractures occur most frequently in trabeculae-rich skeletal sites such as spine,hip,distal radius,and ankle.With the great increase in the number of senile population,
基金The Hong Kong Polytechnic University Research Grants (1-BB 81 and G-YX64)the National Natural Science Foundation of China (10502021 and 10529202)
文摘The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced signi-ficantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mecha-nical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.
基金This research was supported by The People’s Republic of China Ministry of Science and Technology[2018YFF0213606-03(Mu Y.,Hu T.L.,Gong H.,Li S.J.and Sun Y.H.)http://www.most.gov.cn]the Science and Technology Department of Jilin Province[20160623016TC,20170204017NY,20170204038NY(Hu T.L.,Gong H.and Li S.J.)http://kjt.jl.gov.cn],and the ScienceTechnology Bureau of Changchun City[18DY021(Mu Y.,Hu T.L.,Gong H.,and Sun Y.H.)http://kjj.changchun.gov.cn].
文摘In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or chain-link fencing has a certain isolating effect on the deer which greatly interferes with the identification of the individual deer.Also,when the target and background grey values are similar,the multiple background targets cannot be completely separated.To better identify the posture and behaviour of deer in a deer shed,we used digital image processing to separate the deer from the background.To address the problems mentioned above,this paper proposes an adaptive threshold segmentation algorithm based on color space.First,the original image is pre-processed and optimized.On this basis,the data are enhanced and contrasted.Next,color space is used to extract the several backgrounds through various color channels,then the adaptive space segmentation of the extracted part of the color space is performed.Based on the segmentation effect of the traditional Otsu algorithm,we designed a comparative experiment that divided the four postures of turning,getting up,lying,and standing,and successfully separated multiple target deer from the background.Experimental results show that compared with K-means,Otsu and hue saturation value(HSV)+K-means,this method is better in performance and accuracy for adaptive segmentation of deer in artificial breeding scenes and can be used to separate artificially cultivated deer from their backgrounds.Both the subjective and objective aspects achieved good segmentation results.This article lays a foundation for the effective identification of abnormal behaviour in sika deer.
基金The project supported by the Hong Kong Polytechnic University Research Grants(G-U273) the National Natural Science Foundation of China(10502021 and 10529202)
文摘The objective of this study was to study the age-related adaptation of lumbar vertebral trabecular bone at the apparent level, as well as the tissue level in three orthogonal directions. Ninety trabecular specimens were obtained from six normal L4 vertebral bodies of six male cadavers in two age groups, three aged 62 years and three aged 69 years, and were scanned using a high-resolution micro-computed tomography (micro-CT) system, then converted to micro- finite element models to do micro-finite element analyses. The relationship between apparent stiffness and bone volume fraction, and the tissue level yon Mises stress distribution for each trabecular specimen when compressed separately in the longitudinal direction, medial-lateral and anterior-posterior directions (transverse directions) were derived and compared between two age groups. The results showed that at the apparent level, trabecular bones from 69-year group had stiffer bone structure relative to their volume fractions in all three directions, and in both age groups, changes in bone volume fraction could explain more variations in apparent stiffness in the longitudinal direction than the transverse directions; at the tissue level, aging had little effect on the tissue von Mises stress distributions for the compressions in all the three directions. The novelty of the present study was that it provided quantitative assessments on the age and direction- related adaptation of Chinese male lumbar vertebral trabecular bone from two different levels: stiffness at the apparent level and stress distribution at the tissue level. It may help to understand the failure mechanisms and fracture risks of vertebral body associated with aging and direction for the prevention of fracture risks in elder individuals.
基金supported by The People’s Republic of China Ministry of Science and Technology[2018YFF0213606-03(Mu Y.,Hu T.L.,Gong H.,Li S.J.and Sun Y.H.)http://www.most.gov.cn]the Science and Technology Department of Jilin Province[20160623016TC,20170204017NY,20170204038NY,20200402006NC(Mu Y.,Hu T.L.,Gong H.and Li S.J.)http://kjt.jl.gov.cn]the Science and Technology Bureau of Changchun City[18DY021(Mu Y.,Hu T.L.,Gong H.,and Sun Y.H.)http://kjj.changchun.gov.cn].
文摘Radio frequency identification technology is one of the main technologies of Internet of Things(IoT).Through the transmission and reflection of wireless radio frequency signals,non-contact identification is realized,and multiple objects identification can be realized.However,when multiple tags communicate with a singleton reader simultaneously,collision will occur between the signals,which hinders the successful transmissions.To effectively avoid the tag collision problem and improve the reading performance of RFID systems,two advanced tag identification algorithms namely Adaptive M-ary tree slotted Aloha(AMTS)based on the characteristics of Aloha-based and Query tree-based algorithms are proposed.In AMTS,the reader firstly uses the framed slotted Aloha protocol to map the tag set to different time slots,and then identify the collided tags using binary search method based on collision factor or mapping table.Both performance analysis and extensive experimental results indicate that our proposed algorithms significantly outperforms most existing anti-collision approaches in tag dense RFID systems.
基金This research was supported by the Science and Technology Department of Jilin Province[20210202128NC http://kjt.jl.gov.cn]The People’s Republic of China Ministry of Science and Technology[2018YFF0213606-03 http://www.most.gov.cn]+1 种基金the Jilin Province Development and Reform Commission[2019C021 http://jldrc.jl.gov.cn]the Science and Technology Bureau of Changchun City[21ZGN27 http://kjj.changchun.gov.cn].
文摘The scale of deer breeding has gradually increased in recent years and better information management is necessary,which requires the identification of individual deer.In this paper,a deer face dataset is produced using face images obtained from different angles,and an improved residual neural network(ResNet)-based recognition model is proposed to extract the features of deer faces,which have high similarity.The model is based on ResNet-50,which reduces the depth of the model,and the network depth is only 29 layers;the model connects Squeeze-and-Excitation(SE)modules at each of the four layers where the channel changes to improve the quality of features by compressing the feature information extracted through the entire layer.A maximum pooling layer is used in the ResBlock shortcut connection to reduce the information loss caused by messages passing through the ResBlock.The Rectified Linear Unit(ReLU)activation function in the network is replaced by the Exponential Linear Unit(ELU)activation function to reduce information loss during forward propagation of the network.The preprocessed 6864 sika deer face dataset was used to train the recognition model based on SEResnet,which is demonstrated to identify individuals accurately.By setting up comparative experiments under different structures,the model reduces the amount of parameters,ensures the accuracy of the model,and improves the calculation speed of the model.Using the improved method in this paper to compare with the classical model and facial recognition models of different animals,the results show that the recognition effect of this research method is the best,with an average recognition accuracy of 97.48%.The sika deer face recognition model proposed in this study is effective.The results contribute to the practical application of animal facial recognition technology in the breeding of sika deer and other animals with few distinct facial features.
基金This research is supported by the Science and Technology Department of Jilin Province[20210202128NC]The People’s Republic of China Ministry of Science and Technology[2018YFF0213606-03]Jilin Province Development and Reform Commission[2019C021].
文摘Flexible strain sensor has attracted much attention because of its potential application in human motion detection.In this work,the prepared strain sensor was obtained by encapsulating electrospun carbonized sponge(CS)with room temperature vulcanized silicone rubber(RTVS).In this paper,the formation mechanism of conductive sponge was studied.Based on the combination of carbonized sponge and RTVS,the strain sensing mechanism and piezoresistive properties are discussed.After research and testing,the CS/RTVS flexible strain sensor has excellent fast response speed and stability,and the maximum strain coefficient of the sensor is 136.27.In this study,the self-developed CS/RTVS sensor was used to monitor the movements of the wrist joint,arm elbow joint and fingers in real time.Research experiments show that CS/RTVS flexible strain sensor has good application prospects in the field of human motion monitoring.
基金This research is supported by the Science and Technology Department of Jilin Province[20210202128NC http://kjt.jl.gov.cn]The People’s Republic of China Ministry of Science and Technology[2018YFF0213606-03 http://www.most.gov.cn]+1 种基金Jilin Province Development and Reform Commission[2019C021 http://jldrc.jl.gov.cn]the Science and Technology Bureau of Changchun City[21ZGN27 http://kjj.changchun.gov.cn].
文摘With the increasing intensive and large-scale development of the sika deer breeding industry,it is crucial to assess the health status of the sika deer by monitoring their behaviours.A machine vision-based method for the behaviour recognition of sika deer is proposed in this paper.Google Inception Net(GoogLeNet)is used to optimise the model in this paper.First,the number of layers and size of the model were reduced.Then,the 5×5 convolution was changed to two 3×3 convolutions,which reduced the parameters and increased the nonlinearity of the model.A 5×5 convolution kernel was used to replace the original convolution for extracting coarse-grained features and improving the model’s extraction ability.A multi-scale module was added to the model to enhance the multi-faceted feature extraction capability of the model.Simultaneously,the Squeeze-and-Excitation Networks(SE-Net)module was included to increase the channel’s attention and improve the model’s accuracy.The dataset’s images were rotated to reduce overfitting.For image rotation,the angle wasmultiplied by 30°to obtain the dataset enhanced by rotation operations of 30°,60°,90°,120°and 150°.The experimental results showed that the recognition rate of this model in the behaviour of sika deer was 98.92%.Therefore,the model presented in this paper can be applied to the behaviour recognition of sika deer.The results will play an essential role in promoting animal behaviour recognition technology and animal health monitoring management.