Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model ...The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering.展开更多
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金partially sponsored by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)。
文摘The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering.