期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
1
作者 Zhi-Qiang He he-ping xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
The role of natural fracture activation in hydraulic fracturing for deep unconventional geo-energy reservoir stimulation 被引量:3
2
作者 Jun Wang he-ping xie +2 位作者 Stephan KMatthai Jian-Jun Hu Cun-Bao Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2141-2164,共24页
The presence of sealed or semi-sealed,multiscale natural fracture systems appears to be crucial for the successful stimulation of deep reservoirs.To explore the reaction of such systems to reservoir stimulation,a new ... The presence of sealed or semi-sealed,multiscale natural fracture systems appears to be crucial for the successful stimulation of deep reservoirs.To explore the reaction of such systems to reservoir stimulation,a new numerical simulation approach for hydraulic stimulation has been developed,trying to establish a realistic model of the physics involved.Our new model successfully reproduces dynamic fracture activation,network generation,and overall reservoir permeability enhancement.Its outputs indicate that natural fractures facilitate stimulation far beyond the near-wellbore area,and can significantly improve the hydraulic conductivity of unconventional geo-energy reservoirs.According to our model,the fracture activation patterns are jointly determined by the occurrence of natural fractures and the in situ stress.High-density natural fractures,high-fluid pressure,and low effective stress environments promote the formation of complex fracture networks during stimulation.Multistage or multicluster fracturing treatments with an appropriate spacing also increase the stimulated reservoir area(SRA).The simulation scheme demonstrated in this work offers the possibility to elucidate the complex multiphysical couplings seen in the field through detailed site-specific modeling. 展开更多
关键词 Natural fractures DFM Unconventional geo-energy reservoir Fracture reactivation Hydraulic stimulation
下载PDF
In-situ pressure-preserved coring for deep exploration:Insight into the rotation behavior of the valve cover of a pressure controller 被引量:1
3
作者 Da Guo he-ping xie +9 位作者 Ling Chen Zhong-Ya Zhou he-ping Lu Lin Dai Ding-Ming Wang Tian-Yu Wang Ju Li Zhi-Qiang He Yun-Qi Hu Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2386-2398,共13页
In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of t... In-situ pressure-preserved coring(IPP-Coring)is considered to be the most reliable and efficient method for the identification of the scale of oil and gas resources.During IPP-Coring,because the rotation behavior of the pressure controller valve cover in different medium environments is unclear,interference between the valve cover and inner pipe may occur and negatively affect the IPP-Coring success rate.To address this issue,we conducted a series of indoor experiments employing a high-speed camera to gain greater insights into the valve cover rotation behavior in different medium environments,e.g.,air,water,and simulated drilling fluids.The results indicated that the variation in the valve cover rotation angle in the air and fluid environments can be described by a one-phase exponential decay function with a constant time parameter and by biphasic dose response function,respectively.The rotation behavior in the fluid environments exhibited distinct elastic and gravitational acceleration zones.In the fluid environments,the density clearly impacted the valve cover closing time and rotation behavior,whereas the effect of viscosity was very slight.This can be attributed to the negligible influence of the fluid viscosity on the drag coefficient found in this study;meanwhile,the density can increase the buoyancy and the time period during which the valve cover experienced a high drag coefficient.Considering these results,control schemes for the valve cover rotation behavior during IPP-Coring were proposed for different layers and geological conditions in which the different drilling fluids should be used,e.g.,the use of a high-density valve cover in high-pore pressure layers. 展开更多
关键词 In-situ coring Pressure coring Pressure controller Rotation behavior Drilling fluid
下载PDF
3D anisotropy in shear failure of a typical shale
4
作者 Zi-Dong Fan Li Ren +6 位作者 he-ping xie Ru Zhang Cun-Bao Li Hui-Jun Lu An-Lin Zhang Qin Zhou Wei-Qiang Ling 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期212-229,共18页
It is inadequate to study the shear failure anisotropy of shale in only 2D space.Aiming at a 3D analysis,a series of direct shear tests was conducted on Longmaxi shale with three typical bedding orientations:arrester,... It is inadequate to study the shear failure anisotropy of shale in only 2D space.Aiming at a 3D analysis,a series of direct shear tests was conducted on Longmaxi shale with three typical bedding orientations:arrester,divider and short-transverse orientations.During testing,acoustic emission(AE)and digital image correlation(DIC)techniques were simultaneously employed to monitor failure development,after testing,X-ray computed tomography(CT)scanning was adopted to acquire and reconstruct the fractures inside typical ruptured samples for more detailed analysis.The results indicated that the shear strength parameters exhibited 3D anisotropies and those of the arrester sample did not have equivalent shear strength parameters to the shale matrix.The maximum(minimum)shear strength and cohesion were obtained with the divider(short-transverse)orientation,and the internal friction angle reached its maximum(minimum)with the divider(arrester)orientation.Combining the AE,DIC and CT techniques,four characteristic stress levels that can capture the progressive shear failure process of shale rocks were identified,and the onset and accelerated development of shear damage-induced dilation were observed at the crack initiation and coalesce stress thresholds,respectively.During the crack coalescence stage,the dominated microcracking mechanism transferred from tensile-mode to shear-mode.For the arrester and divider orientations,more tensile-mode AE events were generated due to the microcracking along the vertical beddings.Compared with the divider samples,a more complex fracture network with a larger fracture area and volume was obtained in the arrester samples,whose strengths were smaller. 展开更多
关键词 SHALE SHEAR Acoustic emission Digital image correlation X-ray computed tomography Fracture network
下载PDF
Research on in-situ condition preserved coring and testing systems 被引量:21
5
作者 he-ping xie Tao Liu +12 位作者 Ming-Zhong Gao Ling Chen Hong-Wei Zhou Yang Ju Feng Gao Xiao-Bo Peng Xiong-Jun Li Rui-Dong Peng Ya-Nan Gao Cong Li Zhi-Qiang He Ming-Qing Yang Zhi-Yu Zhao 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1840-1859,共20页
As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ en... As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ environmental conditions,leading to distortion of the measured parameters.Herein,a coring and testing systems retaining in-situ geological conditions is presented:the coring system that obtains in-situ rock samples,and the transfer and testing system that stores and analyzes the rocks under a reconstructed environment.The ICP-Coring system mainly consists of the pressure controller,active insulated core reactor and insulation layer and sealing film.The ultimate bearing strength of 100 MPa for pressurepreservation,temperature control accuracy of 0.97%for temperature-retained are realized.CH_(4)and CO permeability of the optimized sealing film are as low as 3.85 and 0.33 ppm/min.The average tensile elongation of the film is 152.4%and the light transmittance is reduced to 0%.Additionally,the pressure and steady-state temperature accuracy for reconstructing the in-situ environment of transfer and storage system up to 1%and±0.2 is achieved.The error recorded of the noncontact sensor ring made of lowdensity polymer is less than 6%than that of the contact test.The system can provide technical support for the deep in-situ rock mechanics research,improving deep resource acquisition capabilities and further clarifying deep-earth processes. 展开更多
关键词 Deep mining In-situ environmental conditions In-situ condition preserved coring and testing In-situ transfer Deep-earth processes ICP-Coring In-situ condition-preserved coring
下载PDF
Therapeutic effect of traditional Chinese medicine on coagulation disorder and accompanying intractable jaundice in hepatitis B virus-related liver cirrhosis patients 被引量:14
6
作者 Yang-Mei Li Hong-Zhi Yang +4 位作者 Wei-Bing Guan Qian-Shan Ke Min Dai he-ping xie Shi-Jun Zhang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第39期6060-6064,共5页
AIM: TO observe the therapeutic effects of new traditional Chinese medicine (TClVl) therapy on coagulation disorder and accompanying intractable jaundice in HBV-related liver cirrhosis patients. METHODS: Using str... AIM: TO observe the therapeutic effects of new traditional Chinese medicine (TClVl) therapy on coagulation disorder and accompanying intractable jaundice in HBV-related liver cirrhosis patients. METHODS: Using stratified random sampling according to fibrinogen (Fib) levels, 145 liver cirrhosis patients due to hepatitis B complicated by coagulation disorder were treated. Of them, 70 in research group were treated with TCM by "nourishing yin, cooling blood and invigorating blood circulation" and Western medicine, 75 in control group were treated with conventional Western medicine. The indexes of liver function, coagulation function and bleeding events were observed and compared. RESULTS: The prothrombin time (PT) was shorter and the fibrinogen (Fib) level was higher in the research group than in the control group (Fib = 1.6-2.0 g/L, 1.1-1.5 g/L, and ≤ 1.0 g/L). The total bilirubin (TBIL) level was significantly lower in the research group than in the control group, except for the subgroup of FIB ≤ 1.0 g/L. CONCLUSION: TCM therapy can improve coagulation fuction and decrease TBIL. 展开更多
关键词 Combination of traditional Chinese and Western medicine Liver cirrhosis Coagulation disorder Nourishing yin Cooling blood and invigorating blood circulation
下载PDF
Hollow glass microspheres/silicone rubber composite materials toward materials for high performance deep in-situ temperaturepreserved coring 被引量:1
7
作者 Jian-Ping Yang Ling Chen +6 位作者 Xiao-Bin Gu Zhi-Yu Zhao Cheng-Hang Fu Dong-Sheng Yang Dong-Zhuang Tian Zhi-Sheng Chen he-ping xie 《Petroleum Science》 SCIE CAS CSCD 2022年第1期309-320,共12页
Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)de... Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)devices were developed to assess deep petroleum reserves accurately.Herein,hollow glass microspheres(HGMs)/silicone rubber(SR)composites that exhibit excellent thermal insulation properties were prepared as thermal insulation materials for deep ITP-coring devices.The mechanism and process of heat transfer in the composites were explored,as well as their other properties.The results show that the HGMs exhibit good compatibility with the SR matrix.When the volume fraction of the HGMs is increased to 50%,the density of the HGMs/SR composites is reduced from 0.97 to 0.56 g/cm^(3).The HGMs filler introduces large voids into the composites,reducing their thermal conductivity to 0.11 W/m·K.The addition of HGMs into the composites further enhances the thermal stability of the SR,wherein the higher the HGMs filler content,the better the thermal stability of the composites.HGMs significantly enhance the mechanical strength of the SR.HGMs increase the compressive strength of the composites by 828%and the tensile strength by 164%.Overall,HGMs improve the thermal insulation,pressure resistance,and thermal stability of HGMs/SR composites. 展开更多
关键词 In-situ temperature-preserved coring(ITP-coring) Deep in-situ conditions Thermal insulation materials HGMs/SR composites
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部