Maize(Zea mays L.)stalk rot is a devastating disease worldwide,causing severe yield losses.Although previous studies have focused on the genetic dissection of maize resistance to stalk rot,the mechanisms of resistance...Maize(Zea mays L.)stalk rot is a devastating disease worldwide,causing severe yield losses.Although previous studies have focused on the genetic dissection of maize resistance to stalk rot,the mechanisms of resistance remain largely unknown.We used a comparative proteomics approach to identify candidate proteins associated with stalk rot resistance.Statistical analyses revealed 763 proteins differentially accumulated between Fusarium graminearum and mock-inoculated plants.Among them,the antioxidant protein ZmPrx5,which was up-accumulated in diseased plants,was selected for further study.ZmPrx5 transcripts were present in root,stalk,leaf,ear,and reproductive tissues.The expression of ZmPrx5 in three inbred lines increased significantly upon F.graminearum infection.ZmPrx5 was localized in the cytoplasm.Compared to control plants,maize plants overexpressing ZmPrx5 showed increased resistance to F.graminearum infection,and ZmPrx5 mutant plants were more susceptible than wild-type plants.Defense-associated pathways including plant–pathogen interactions,phenylalanine metabolism,and benzoxazinoid and flavonoid biosynthesis were suppressed in ZmPrx5 homozygous mutant plants compared with wild-type plants.We suggest that ZmPrx5 positively regulates resistance against stalk rot in maize,likely through defense-oriented transcriptome reprogramming.These results lay a foundation for further research on the roles of Prx5 subfamily proteins in resistance to plant fungal diseases,and provide a potential genetic resource for breeding disease-resistance maize lines.展开更多
Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses.However,the roles of sphingolipids in...Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses.However,the roles of sphingolipids in plant signal transduction in response to environmental cues are yet to be investigated in detail. In this review,we discuss the signaling roles of sphingolipid metabolites with a focus on plant sphingolipids.We also mention some microbial sphingolipids that initiate signals during their interaction with plants, because of the limited literatures on their plant analogs.The equilibrium of nonphosphorylated and phosphorylated sphingolipid species determine the destiny of plant cells,whereas molecular connections among the enzymes responsible for this equilibrium in a coordinated signaling network are poorly understood.A mechanistic link between the phytohormone-sphingolipid interplay has also not yet been fully understood and many key participants involved in this complex interaction operating under stress conditions await to be identified.Future research is needed to fill these gaps and to better understand the signal pathways of plant sphingolipids and their interplay with other signals in response to environmental stresses.展开更多
基金supported by the National Natural Science Foundation of China (U1804113, 31872872 and 31671675)the National Key Research and Development Program of China (2016YFD0102000)+2 种基金the Open Project Funding of the State Key Laboratory of Crop Stress Adaptation and Improvementthe 111 Project#D16014Shandong Provincial Natural Science Foundation (ZR2015CM034 and ZR2016CM30)
文摘Maize(Zea mays L.)stalk rot is a devastating disease worldwide,causing severe yield losses.Although previous studies have focused on the genetic dissection of maize resistance to stalk rot,the mechanisms of resistance remain largely unknown.We used a comparative proteomics approach to identify candidate proteins associated with stalk rot resistance.Statistical analyses revealed 763 proteins differentially accumulated between Fusarium graminearum and mock-inoculated plants.Among them,the antioxidant protein ZmPrx5,which was up-accumulated in diseased plants,was selected for further study.ZmPrx5 transcripts were present in root,stalk,leaf,ear,and reproductive tissues.The expression of ZmPrx5 in three inbred lines increased significantly upon F.graminearum infection.ZmPrx5 was localized in the cytoplasm.Compared to control plants,maize plants overexpressing ZmPrx5 showed increased resistance to F.graminearum infection,and ZmPrx5 mutant plants were more susceptible than wild-type plants.Defense-associated pathways including plant–pathogen interactions,phenylalanine metabolism,and benzoxazinoid and flavonoid biosynthesis were suppressed in ZmPrx5 homozygous mutant plants compared with wild-type plants.We suggest that ZmPrx5 positively regulates resistance against stalk rot in maize,likely through defense-oriented transcriptome reprogramming.These results lay a foundation for further research on the roles of Prx5 subfamily proteins in resistance to plant fungal diseases,and provide a potential genetic resource for breeding disease-resistance maize lines.
基金the National Natural Science Foundation of China (31570808)the Fundamental Research Funds for the Central Universities (2662015PY090).
文摘Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses.However,the roles of sphingolipids in plant signal transduction in response to environmental cues are yet to be investigated in detail. In this review,we discuss the signaling roles of sphingolipid metabolites with a focus on plant sphingolipids.We also mention some microbial sphingolipids that initiate signals during their interaction with plants, because of the limited literatures on their plant analogs.The equilibrium of nonphosphorylated and phosphorylated sphingolipid species determine the destiny of plant cells,whereas molecular connections among the enzymes responsible for this equilibrium in a coordinated signaling network are poorly understood.A mechanistic link between the phytohormone-sphingolipid interplay has also not yet been fully understood and many key participants involved in this complex interaction operating under stress conditions await to be identified.Future research is needed to fill these gaps and to better understand the signal pathways of plant sphingolipids and their interplay with other signals in response to environmental stresses.