The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and...The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and resultant peak particle velocity(PPV)generates.With the orientation sequence of holes blasts on site,the superimposition angle of wave changes and hence results in significant variation in resultant PPV.The orientation with respect to the initiation of blasts resulting in lowest PPV needs to be identified for any site.By knowing the PPV contour of vibration waves in mine sites,it is possible to reduce the vibration on the structures by changing the initiation sequence.In this paper,experimental blasts were conducted at two different mine sites and the PPV values were recorded at different ori-entations from the blast site and its initiation sequence.The PPV contours were drawn to identify the orientation with least and highest PPV generation line.It was found that by merely changing the initi-ation sequence of blasts with respect to the sensitive structure or point of interest,the PPV values can be reduced significantly up to 76.9%.展开更多
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m...The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.展开更多
文摘The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and resultant peak particle velocity(PPV)generates.With the orientation sequence of holes blasts on site,the superimposition angle of wave changes and hence results in significant variation in resultant PPV.The orientation with respect to the initiation of blasts resulting in lowest PPV needs to be identified for any site.By knowing the PPV contour of vibration waves in mine sites,it is possible to reduce the vibration on the structures by changing the initiation sequence.In this paper,experimental blasts were conducted at two different mine sites and the PPV values were recorded at different ori-entations from the blast site and its initiation sequence.The PPV contours were drawn to identify the orientation with least and highest PPV generation line.It was found that by merely changing the initi-ation sequence of blasts with respect to the sensitive structure or point of interest,the PPV values can be reduced significantly up to 76.9%.
文摘The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.