This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima...This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.展开更多
In this paper,a hybrid model based on sooty tern optimization algo-rithm(STOA)is proposed to optimize the parameters of the support vector machine(SVM)and identify the best feature sets simultaneously.Feature selec-ti...In this paper,a hybrid model based on sooty tern optimization algo-rithm(STOA)is proposed to optimize the parameters of the support vector machine(SVM)and identify the best feature sets simultaneously.Feature selec-tion is an essential process of data preprocessing,and it aims to find the most rele-vant subset of features.In recent years,it has been applied in many practical domains of intelligent systems.The application of SVM in many fields has proved its effectiveness in classification tasks of various types.Its performance is mainly determined by the kernel type and its parameters.One of the most challenging process in machine learning is feature selection,intending to select effective and representative features.The main disadvantages of feature selection processes included in classical optimization algorithm are local optimal stagnation and slow convergence.Therefore,the hybrid model proposed in this paper merges the STOA and differential evolution(DE)to improve the search efficiency and con-vergence rate.A series of experiments are conducted on 12 datasets from the UCI repository to comprehensively and objectively evaluate the performance of the proposed method.The superiority of the proposed method is illustrated from dif-ferent aspects,such as the classification accuracy,convergence performance,reduced feature dimensionality,standard deviation(STD),and computation time.展开更多
This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-S...This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-SSA.The proposed method introduces a better search space to find the optimal solution at each iteration.However,we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds.The obtained solutions by the proposed method are represented using the image histogram.The proposed RSA-SSA employed Otsu’s variance class function to get the best threshold values at each level.The performance measure for the proposed method is valid by detecting fitness function,structural similarity index,peak signal-to-noise ratio,and Friedman ranking test.Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA.The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.展开更多
In this paper, a novel Krein space approach to robust estimation for uncertain systems with accumulated bias is proposed. The bias is impacted by system uncertainties and exists in both state transition and observer m...In this paper, a novel Krein space approach to robust estimation for uncertain systems with accumulated bias is proposed. The bias is impacted by system uncertainties and exists in both state transition and observer matrices. Initial conditions and cross-correlated uncertainty inputs are described by the sum quadratic constraint (SQC). Without modifying the SQC, the minimal state of the SQC is obtained through Krein space method. The inertia condition for a minimum of a deterministic quadratic form is derived when the coefficient of observer uncertainty input is non-unit matrix. Recursions of Krein space state filtering and bias filtering are developed respectively. Since the cross correlation between uncertainties is considered, a cross correlation gain is introduced into the posteriori estimator. Finally, a numerical example illustrates the performance of the proposed filter.展开更多
基金King Saud University for funding this research through Researchers Supporting Program Number(RSPD2023R704),King Saud University,Riyadh,Saudi Arabia.
文摘This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.
基金Sanming University introduces high-level talents to start scientific research funding support project(20YG14,20YG01)Guiding science and technology projects in Sanming City(2020-G-61,2020-S-39)+1 种基金Educational research projects of young and middle-aged teachers in Fujian Province(JAT200618,JAT200638)Scientific research and development fund of Sanming University(B202009,B202029).
文摘In this paper,a hybrid model based on sooty tern optimization algo-rithm(STOA)is proposed to optimize the parameters of the support vector machine(SVM)and identify the best feature sets simultaneously.Feature selec-tion is an essential process of data preprocessing,and it aims to find the most rele-vant subset of features.In recent years,it has been applied in many practical domains of intelligent systems.The application of SVM in many fields has proved its effectiveness in classification tasks of various types.Its performance is mainly determined by the kernel type and its parameters.One of the most challenging process in machine learning is feature selection,intending to select effective and representative features.The main disadvantages of feature selection processes included in classical optimization algorithm are local optimal stagnation and slow convergence.Therefore,the hybrid model proposed in this paper merges the STOA and differential evolution(DE)to improve the search efficiency and con-vergence rate.A series of experiments are conducted on 12 datasets from the UCI repository to comprehensively and objectively evaluate the performance of the proposed method.The superiority of the proposed method is illustrated from dif-ferent aspects,such as the classification accuracy,convergence performance,reduced feature dimensionality,standard deviation(STD),and computation time.
文摘This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding,called RSA-SSA.The proposed method introduces a better search space to find the optimal solution at each iteration.However,we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds.The obtained solutions by the proposed method are represented using the image histogram.The proposed RSA-SSA employed Otsu’s variance class function to get the best threshold values at each level.The performance measure for the proposed method is valid by detecting fitness function,structural similarity index,peak signal-to-noise ratio,and Friedman ranking test.Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA.The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.
基金supported by the Fundamental Research Funds for the Central Universities(No.DL13BB14)
文摘In this paper, a novel Krein space approach to robust estimation for uncertain systems with accumulated bias is proposed. The bias is impacted by system uncertainties and exists in both state transition and observer matrices. Initial conditions and cross-correlated uncertainty inputs are described by the sum quadratic constraint (SQC). Without modifying the SQC, the minimal state of the SQC is obtained through Krein space method. The inertia condition for a minimum of a deterministic quadratic form is derived when the coefficient of observer uncertainty input is non-unit matrix. Recursions of Krein space state filtering and bias filtering are developed respectively. Since the cross correlation between uncertainties is considered, a cross correlation gain is introduced into the posteriori estimator. Finally, a numerical example illustrates the performance of the proposed filter.